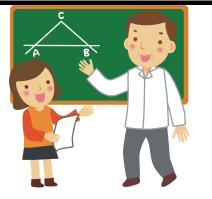
Who, where and when?

Who?

JustMaths

One of the following four people has committed a crime. The criminal made 2 errors, the victim has made 0 errors and the other two suspects have made 1 error.

Q1.	y = 3x + 3 y = 2x - 7	(1) (2)		$x^{2} + y = 6$ $y = x$	(1) (2)
Q3.	$x^{2} - 2y = 2$ y = x + 3	(1) (2)		$x^{2} + 4y = 7$ 2y = 2 - x	(1) (2)
Q5 .	$y = 3x^2 - 2$ y = 3 - 2x	(1) (2)	Q6 .	$2y = 4x^2 - 7$ y = 6x	(1) (2)


The ICT teacher said:

- Q1 are both linear equations
- Q2 has two solutions for y
- Q3 factorises into

(x - 4)(x + 2) = 0

• Q1 y = - 27

The maths teacher said:

- Q4 has one linear equation & one quadratic
- Q1 solution is (-10, -27)
- Q6 factorises into

(2x - 7)(2x + 1) = 0

 Q4 solutions are (1, 0.5) and (-1, 1.5) The history teacher said:

- Q2 has one linear equation & one quadratic
- Q1 has two solutions for x
- Q3 solutions are (4,7) and (-2, 1)
- Q1 x = 10

The PE teacher said:

- Q6 has one linear equation
- Q5 factorises into

(3x + 5) (x - 1) = 0

- Q2 solutions are (3, 3) and (-2,-2)
- Q5 solutions are (1, 1/3) and (1,1)

	Where & When? The murder was committed at one of the locations below, but which one? It happened where ALL the statements are correct.					
Q1.	$x^{2} + y^{2} = 16$ y = x - 1 (answer)	(1) Q2 .	$y = 3 - x^2$ y = 5 - 3x	(1) (2)		
Q3.	$x^{2} + y^{2} = 20$ y = x + 4 (answer)	(2)	$x^{2} + y^{2} = 32$ y = 1 + 3x (answ	(1) (2) ver to 2 dp)		
Q5.	$x^{2} + y^{2} = 100$ y = 2x - 3 (answer)	(2)	$x^{2} + y^{2} = 34$ y = 1 + 2x	(1) (2)		

Where & When?

The murder was committed at one of the locations below, but which one? It happened where **ALL** the statements are correct.

	 Only Q2 does not include an equation of a circle 				
The maths	 Q1 rearranges into 2x² - 2x - 15 = 0 One of the solutions to Q6 is (1,3) 				
classroom on Monday					
	 The solutions to Q2 are (-1, -2) and 				
	(-2, 1)				
	 Q2 is the only question you don't need to use the quadratic formula 				
The dining hall on	• Q3 rearranges into $2x^2 + 8x - 4 = 0$				
Wednesday	• Q2 rearranges into $2x^2 + 3x + 2 = 0$				
	• The solutions to Q2 are (1,2) and (2,-1)				
	 The solutions to Q1 are (3.28, 2.28) and (-2.28, -3.28) 				
	• Q4 rearranges into $10x^2 + 6x - 31 = 0$				
The gym on Thursday	 Q2 is the only one that includes a linear equation 				
	 The solutions to Q3 are (0.45,4.45) and (-4.45, 0.45) 				
	• Q5 rearranges into $5x^2 - 12x - 91 = 0$				
The playing fields on	 The solutions to Q6 are (2.2, 5.4) and (-3,-5) 				
Friday	• Q6 rearranges into $5x^2 + 4x - 33 = 0$				
	 The solutions to Q5 are (5.63, 8.26) and (-3.23, -9.46) 				