Iteration (H)

A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas.

Name:	Glyn	Bram	
Total Marks:	,		

1 (a) Show that the equation
$$x^3 + 4x = 1$$
 has a solution between $x = 0$ and $x = 1$

$$0 = 0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0$$

[2]

b) Show that the equation $x^3 + 4x = 1$ can be arranged to give $x = \frac{1}{4} - \frac{x^3}{4}$

$$-x^{3}$$

$$-x^{3}$$

$$4x = 1 - x^{3}$$

$$4x = 4 - x^{4}$$
[1]

c) Starting with $x_0=0$, use the iteration formula $x_{n+1}=\frac{1}{4}-\frac{x_n^3}{4}$ twice, to find an estimate for the solution of $x^3 + 4x = 1$

$$X_{1} = \frac{1}{4} - \frac{3}{4}$$
= 0.35

$$x_{2} = \frac{1}{4} - \frac{0.35}{4}$$

$$= 0.346$$

[3]

2. An approximate solution to an equation is found using this iterative process.

$$x_{n+1} = \frac{(x_n)^3 - 3}{8}$$
 and $x_1 = -1$

a) Work out the values of x_2 and x_3

$$X_2 = (-1)^3 - 3$$

$$X_3 = (-0.5)^3 - 3$$

$$x_2 = -0.5$$

$$x_3 = -0.390625[2]$$

• JustMaths

b) Work out the solution to 6 decimal places.
$$x_7 = -0.38196609$$
 $x_8 = -0.38196609$ $x_8 = -0.381966015$ $x_6 = -0.381967463$ $x_6 = -0.381966$

$$x_7 = -0.38196609$$

 $x_8 = -0.381966015$

3. a) Show that the equation $3x^2 - x^3 + 3 = 0$ can be rearranged to give

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^{3}$$

$$+ x^{2}$$

$$+ x^$$

[1]

b) Using

$$x_{n+1} = 3 + \frac{3}{x_n^2}$$
 with $x_0 = 3.2$

find the values of x_1 , x_2 and x_3

$$X_1 = 3 + \frac{3}{3.3}^2 = 3.29246875$$

 $X_2 = 3.276659786$
 3.279420685

c) Explain what the values of x_1 , x_2 and x_3 represent.

Inireasingly accurate estimations
of one solution to
$$3x^2-x^3+3=0$$

[1]

4. This iterative process can be used to find approximate solutions to $x^3 + 5x - 8 = 0$

a) Use this iterative process to find a solution to 4 decimal places of $x^3 + 5x - 8 = 0$ Start with the value x = 1

$$x = 1 \quad \frac{3 \times 1^{3} + 8}{3 \times 1^{3} + 5} = 1.35$$

$$x = 1.329 \qquad = > 1.328860351$$

$$x = 1.329 \qquad = > 1.328860344$$

b) By substituting your answer to part (a) into $x^3 + 5x - 8$

comment on the accuracy of your solution to $x^3 + 5x - 8 = 0$ 1.2289³ + 5 x 1, 2289 - 8 = 0.000378893 Close to zero, so good estimate.

[2]

[3]

5. a) Complete the table for $y = x^3 - 6x - 5$.

X	0	1	2	3	4
У	-5	-10	-9	4	35
03	G×0-5		123-6x1	+-5	

$$0^{3} - 6 \times 0 - 5$$

$$4^3 - 6 \times 4 - 5$$
= 35

[2]

b) (i) Between which two consecutive integers is there a solution to the equation $x^3 - 6x - 5 = 0$?

Give a reason for your answer.

A solution lies between x = 2 and x = 3

Because the y value changes from regative
to positive therefore crossing thereaxis (y=0) [2]

(ii) Choose a value of x between the two values you gave in part (b)(i). Calculate the corresponding value of y.

(b)(ii)
$$x = ... - 5$$

 $y = ... - 4 ... 375$ [2]

(iii) State a smaller interval in which the solution lies.

(iii)
$$2.5 < C < 3$$
 [1]

JustMaths

- 6. A sequence of numbers is formed by the iterative process $a_{n+1} = (a_n)^2 a_n$
- a) Describe the sequence of numbers when $a_1=1$

Show working to justify your answer.

$$q_{3}=1-1=0$$

$$0_3=1-1=0$$
 When $0_1=1$ the sequence $0_3=0-0=0$ ends in repeated 0_5 [1

b) Describe the sequence of numbers when $a_1=-1$

$$a_3 = (-1)^2 - 1 = 2$$

Show working to justify your answer.

$$a_1 = -1$$

Show working to justify your answer.

 $a_2 = (-1)^2 - 1 = 2$

When $a_1 = -1$ the sequence $a_2 = 2$ and in repeated $a_3 = 2^2 - 2 = 2$

[2]

c) Work out the value of a_2 when $a_1 = 1 - \sqrt{2}$

$$= (1-15)(1-15-1)$$

$$= (1-15)(1-15-1)$$