

Pythagoras' Theorem (H)

A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas.

Name:	Lisa	Woods	
Total Marks:			

1. The lengths of the sides of a right-angled triangle are all integers. Prove that if the lengths of the two shortest sides are even, then the length of the third side must also be even.

The point B is $2\sqrt{5}$ units from A and lies on the intersection of two grid lines. Mark one possible position for B.

$$2\sqrt{5} = \sqrt{20}$$

$$4^2 + 2^2 = 20$$

[3]

3. Triangles ABD and BCD are right-angled triangles.

Work out the value of x.

Give your answer correct to 2 decimal places.

$$30 = \sqrt{10^2 - 5^2} = 5\sqrt{3}$$

$$B = \sqrt{5\sqrt{3}^2 + 4^2}$$
= 9.539392014

9.54

4. VABCD is a solid pyramid.

$$AC = \sqrt{20^2 + 20^2} = 20\sqrt{2}$$

$$h = \frac{10\sqrt{2}}{\cos 55} = 24.6561$$

ABCD is a square of side 20 cm.

The angle between any sloping edge and the plane ABCD is 55°

Calculate the surface area of the pyramid.

Give your answer correct to 2 significant figures.

hriangle =
$$20 \times 22.537 = 225.37$$

Pythagoras' Theorem (H) - Version 2 January 2016

5. The diagram shows a line joining O to P.

The gradient of the line is 2 The length of the line is $\sqrt{2645}$ Work out the coordinates of P.

$$\sqrt{x^{2} + (2x)^{2}} = \sqrt{2645}$$

$$x^{2} + 4x^{2} = 2645$$

$$5x^{2} = 2645 \quad (\div 5)$$

$$x^{2} = 529$$

$$x = 23$$

$$2x = 46$$

$$= (23, 46)$$

6. The rectangle ABCD represents a park.

The lines show all the paths in the park.

The circular path is in the centre of the rectangle and has a diameter of 10m.

Calculate the shortest distance from A to C across the park, using only the paths shown.

$$AC^2 = 60^2 + 40^2$$

 $AC = 20\sqrt{3}$

7. ABCD is a rectangle.

Not to scale

(a) Sunita calculates the length of AC, but gets it wrong.

$$8^{2} - 6^{2} = AC^{2}$$
 $\sqrt{28} = AC$
 $\sqrt{28} = 5.29 \text{ or } -5.29$
 $AC = 5.29$

Explain what Sunita has done wrong. She has subtracted 82-62 Should have added 82+62

[1]

(b) Calculate the length of AC.

$$AC = \sqrt{8^2 + 6^2}$$
= 10

(C) m [2]

8. A triangle has sides of length 23.8 cm, 31.2 cm and 39.6 cm.

Is this a right-angled triangle?

Show how you decide.

If a right angled triangle ther
$$23.8^2 + 31.2^2 = 39.6^2$$

39.62 = 1568.16 : not a right angled triangle

6. Triangle ABC has perimeter 20 cm.

$$AB = 7 cm$$
.

$$BC = 4 cm$$
.

By calculation, deduce whether triangle ABC is a right-angled triangle.

[4]

7. Here is a right-angled triangle.

Four of these triangles are joined to enclose the square ABCD as shown below.

Show that the area of the square ABCD is $x^2 + y^2$

$$AD = \sqrt{x^2 + y^2}$$

$$wea AB(D = \sqrt{x^2 + y^2} \times \sqrt{x^2 + y^2}$$

$$= x^2 + y^2$$

11. The diagram shows a cuboid ABCDEFGH.

AB = 7 cm, AF = 5 cm and FC = 15 cm.

Calculate the volume of the cuboid.

Give your answer correct to 3 significant figures.

$$AC = \sqrt{15^2 - 5^2} = 10\sqrt{2}$$

$$BC = \sqrt{100z^2 - 7^2} = \sqrt{151}$$

430 cm³ [4]

12

a is 8.3 cm correct to the nearest mm $\frac{15}{2} = 8.35$ b is 6.1 cm correct to the nearest mm $\frac{15}{2} = 6.05$ Calculate the upper bound for c.

You must show your working.

$$C^{4} = \sqrt{a^{2} - b^{2}}$$

$$= \sqrt{8.35^{2} - 6.05^{2}}$$

$$= 5.754997828$$

5.75 cm [4]

13. A circle has diameter 10 cm

A square has side length 6 cm

Not drawn accurately

Use Pythagoras' theorem to show that the square will fit inside the circle without touching the edge of the circle.

Length of diagonal of square V62+62 = 8.5 (1dp)

.. square will fit inside the circle

[3]

[1]

14. The area of a right-angled, isosceles triangle is 4 cm²

Work out the perimeter of the triangle in centimetres. Give your answer in the form $a + b\sqrt{c}$, where a, b and c are integers.

$$\sqrt{252^{2} + 252^{2}} = 4$$

$$252 + 252 + 25$$

[4]

15. Which of these points is not 5 units from the point (0, 0)? Circle your answer.

(-5, 0)

