Similarity \& Congruence (H)
A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas.

Name:	Mel@JostMaths
Total Marks:	

1. Triangle $A B C$ is isosceles with $A B=A C$.

The line $B P$ bisects $A \hat{B} C$.
The line $C Q$ bisects $A \hat{C} B$.

Diagram not drawn to scale
Prove that triangle $B C P$ and triangle $C B Q$ are congruent.
You must give reasons to support your statements.
$P C B=Q B C 2$ angles in an isoscelestrangle (ABC) are equal
$B C=$ shared side so is equal length in each Inangle
$P B C=Q C B$ angles were brected \therefore mangles are conceive
(ASA)
Cube A has a surface area of $150 \mathrm{~cm}^{2}$
Cube B has sides half the length of cube A
 What is the volume of cube B ?

To solve this problem, Step decides to

$$
\begin{aligned}
1 \text { face } & =150 \div 6 \\
& =25 \mathrm{~m}^{2}
\end{aligned}
$$

3 halve the surface length
2. calculate the square root of the answer
\square then divide by 6
4 then cube this answer to work out the volume.
Evaluate Steph's method.
Steins method os wrong (1) you halvethe

$$
\begin{aligned}
\text { side length } & =\sqrt{25} \\
& =5 \mathrm{~cm}
\end{aligned}
$$

$$
=2.5 \mathrm{~cm}
$$ Volume $=2.5^{3}$

side len th not the are a (2) the orderisincorrect.
3. Which of these is not used to prove that triangles are congruent? Circle your answer.
SSS LAS AAA VHS
4. Rectangle $A B C D$ is mathematically similar to rectangle DAEF.

$$
\begin{aligned}
& A B=10 \mathrm{~cm} . \\
& A D=4 \mathrm{~cm} .
\end{aligned}
$$

Calculate an estimate of the height of the tree.

$$
\begin{aligned}
33 . \dot{3} \times 30= & 1000 \mathrm{~cm} \\
& \div 100=10 \mathrm{~m}
\end{aligned}
$$

(a) \qquad m [3]
(b) Give two reasons why this method may not be suitable to estimate the height of a very tall building.

- lIkely to be inaccurate due to large scale factarsand distances
- would have to stand a long way from the building [2]

6. $A B C D$ is a parallelogram.

Prove that triangle $A B D$ is congruent to triangle $C D B$.
$D B=$ shared side
$C D B=D B A$ beaune atemate angles are equal
$D C=A B \quad \therefore A B D$ is congment to $C D B$ (SAX)
7. Solid \mathbf{A} and solid \mathbf{B} are mathematically similar.

The ratio of the surface area of solid A to the surface area of solid B is $4: 9$
The volume of solid B is $405 \mathrm{~cm}^{3}$.
Show that the volume of solid A is $120 \mathrm{~cm}^{3}$.

$$
\begin{align*}
& \text { Surface area } \\
& A: B \\
& \div 4: 9 \\
& \div 1: \frac{9}{4} 2 \div 4 \tag{3}\\
& \text { area sF }=\frac{9}{4} \text { solengthsF }=\frac{3}{2} \\
& 120 \mathrm{~cm}^{3}
\end{align*}
$$

$$
405 \div\left(\frac{3}{2}\right)^{3}=120 \mathrm{~cm}^{3}
$$

8. Two spheres have radii in the ratio $5: 3$ Circle the ratio of their volumes.

$$
5: 3 \quad 15: 9 \quad 25: 9
$$

2:5

1:5/3 \& length sf 9. $A B C D$ is a rhombus.

$$
\text { area } S F=\frac{25}{9} \text { volume } \delta f=\frac{125}{27}
$$

M and N are points on $B D$ such that $D N=M B$.
Prove that triangle $D N C$ is congruent to triangle $B M C$.

$$
\begin{aligned}
& D N=M B \\
& C D N=C B M \\
& (2 \text { angles inanisoscelesare eave.) } \\
& B C=D C \quad \therefore \text { DNC and BMC are }
\end{aligned}
$$

10. Two boxes are made with card. congruent (SAS)
The boxes are similar cuboids.
The smaller box has height 32 cm

$$
\text { area }=100 \%
$$

It takes 44% more card to make the larger box.

Work out the height, h, of the larger box.

$$
\begin{aligned}
& \text { area } S F=1.44 \\
& \text { length } S F=\sqrt{1.44}=1.2 \\
& 32 \times 1.2=38.4 \mathrm{~cm}
\end{aligned}
$$

11. Two similar pyramids A and B have surface areas $180 \mathrm{~cm}^{2}$ and $80 \mathrm{~cm}^{2}$ respectively.

Pyramid A
Pyramid B
The volume of pyramid A is $810 \mathrm{~cm}^{3}$.
Show that the volume of pyramid B is $240 \mathrm{~cm}^{3}$.

$$
\begin{align*}
& \text { area } S F=\frac{9}{4} \\
& \text { length } S F=\sqrt{\frac{9}{4}}=\frac{3}{2} \\
& \text { Volume } S F=\left(\frac{3}{2}\right)^{\beta}=\frac{27}{8}=3.375 \\
& 810 \div 3.375=240 \mathrm{~cm}^{3} \tag{5}
\end{align*}
$$

12. In the diagram $B C$ is parallel to $D E$.

a) Prove that triangle $A B C$ is similar to triangle $A D E$.
$A E D=A C B$ corresponding angles are equal
$A D E=A B C$ corresponding angles are equal
$D A C=$ shared angle.
so all angles are prerened
b) Calculate the length of AC.
5.8×3
b) \qquad cm
c) Find the ratio
area of quadrilateral $D B C E$: area of triangle $A B C$.

so area $S f=3^{2}=9$ area: area
$A D E: A B C$ $1: 9$
$13 A B C D$ is a parallelogram.

E is the point where the diagonals $A C$ and $B D$ meet.
Prove that triangle $A B E$ is congruent to triangle $C D E$.

$$
A E=C E \text { diagonals lect }
$$

$A \in B=D E C$ velcally apposite angles are equal $C D=E B$ diagenabs brest \therefore they are congruent
14 Mark has made a clay model.
He will now make a clay statue that is mathematically similar to the clay model.
The model has a base area of $6 \mathrm{~cm}^{2}$
The statue will have a base area of $253.5 \mathrm{~cm}^{2}$
Mark used 2 kg of clay to make the model.
Clay is sold in 10kg bags.

$6 \mathrm{~cm}^{2}$

Mark has to buy all the clay he needs to make the statue.
How many bags of clay will Mark need to buy?

$$
\begin{aligned}
& \text { area } S F=283.5 \div 6=42.25 \\
& \text { length } 8 f=\sqrt{42.25}=6.5 \\
& \text { Vol } S F=6.5^{3} \\
& 2 \times 6.5^{3}=549.25 \mathrm{~kg}
\end{aligned}
$$

OJustMaths

15.

$L M N$ is a right-angled triangle.
Angle $N L M=90^{\circ}$

$$
16 \div 8=2
$$

$P Q$ is parallel to $L M$.
The area of triangle $P N Q$ is $8 \mathrm{~cm}^{2}$
The area of triangle $L P Q$ is $16 \mathrm{~cm}^{2}$
they share ar bare' so

Work out the area of triangle $L Q M$.

$$
P L=2 N P
$$

area $L M N=8 \times 3^{2}=72 \mathrm{~cm}^{2}$

$$
\angle P Q=72-(8+16)=72-24
$$

$$
48
$$

16.

$P Q=P R$.
S is the midpoint of $P Q$.
T is the midpoint of $P R$.

- JustMaths

Prove triangle $Q T R$ is congruent to triangle $R S Q$.
$P R Q=P Q R$ bare anglesunan isosceles
$Q R=$ shared side.
$Q S=T R$ sidesare brected \therefore theyare congment
17. The pilot of an aircraft wants to fly from A to D.

The aircraft flies from A to $E, 1^{\circ}$ off course.

b) How should the aircraft have turned at C to fly directly towards D?

Tick a box.

between 1° and 2° clockwise

2° clockwise

more than 2° clockwise

18. The diagram shows trapezium $A B C D$.
E is the midpoint of AD.
$B C E$ is an equilateral triangle.

Prove that triangle $A B E$ is congruent to triangle DCE.
$B E=E C$ sides of an equilatool tangle. $B E A=C E D=60^{\circ}$ altemate angles dreequal. $A \in=E D \in$ is the midpoint of $A D \therefore$ they are congruent
19. Here are four triangles.

a) Which two triangles are congruent? Circle your answers.

D
b) Circle the reason for your answer to part (a).
SSS

RUS

CREDITS AND NOTES

Q	Awarding Body	Q	Awarding Body	\mathbf{Q}	Awarding Body
1	WJEC Eduqas	8	AQA	15	Pearson Edexcel
2	AQA	9	Pearson Edexcel	16	Pearson Edexcel
3	AQA	10	AQA	17	AQA
4	Pearson Edexcel	11	OCR	18	OCR
5	OCR	12	OCR	19	AQA
6	OCR	13	Pearson Edexcel		
7	Pearson Edexcel	14	Pearson Edexcel		

Notes:

These questions have been retyped from the original sample/specimen assessment materials and whilst every effort has been made to ensure there are no errors, any that do appear are mine and not the exam board s (similarly any errors I have corrected from the originals are also my corrections and not theirs!).

Please also note that the layout in terms of fonts, answer lines and space given to each question does not reflect the actual papers to save space.

These questions have been collated by me as the basis for a GCSE working party set up by the GLOW maths hub - if you want to get involved please get in touch. The objective is to provide support to fellow teachers and to give you a flavour of how different topics "could" be examined. They should not be used to form a decision as to which board to use. There is no guarantee that a topic will or won't appear in the "live" papers from a specific exam board or that

Links:

AQA http://www.aqa.org.uk/subjects/mathematics/gcse/mathematics-8300
OCR http://ocr.org.uk/gcsemaths
Pearson Edexcel http://qualifications.pearson.com/en/qualifications/edexcel-gcses/mathematics-2015.html
WJEC Eduqas http://www.eduqas.co.uk/qualifications/mathematics/gcse/

Contents:

This version contains questions from:
AQA - Sample Assessment Material, Practice set 1 and Practice set 2
OCR - Sample Assessment Material and Practice set 1
Pearson Edexcel - Sample Assessment Material, Specimen set 1 and Specimen set 2
WJEC Eduqas - Sample Assessment Material

