Trigonometry 2 （H）
A collection of 9－1 Maths GCSE Sample and Specimen questions from AQA，OCR，Pearson－Edexcel and WJEC Eduqas．
Name：Mel＠JstMaths
Total Marks：

1．The area of the triangle is $\sqrt{300} \mathrm{~cm}^{2}$ ．

$$
\begin{aligned}
& \sqrt{300} \\
= & \sqrt{100} \times \sqrt{3} \\
= & 10 \sqrt{3}
\end{aligned}
$$

Calculate the length of $A B$ ．

$$
\begin{aligned}
& \text { area }=\frac{1}{2} a b \sin C \\
& \sqrt{300}=\frac{1}{2} \times(x+3) \times x \times \sin 60 \\
& 10 \sqrt{3}=\frac{1}{2} x(x+3) \times \frac{\sqrt{3}}{2} \\
& \times \frac{2}{\sqrt{3}} 乌 \\
& +2\left(20=\frac{1}{2} x^{2}+\frac{3}{2} x\right. \\
& x^{2}+3 x-40=0 \\
& (x+8)(x-5)=0 \\
& x=-8 \quad x=5 \\
& \uparrow \text { 。 } \\
& \text { notasolubion. } \\
& \text { then } \\
& \text { using } \\
& c^{2}=b^{2}+a^{2}-2 b a \operatorname{Cos} C \\
& =5^{2}+8^{2}-2 \times 5 \times 8 \cos 60 \\
& =25+64-80 \times 0.5 \\
& =89-40 \\
& c=\sqrt{49} \\
& c=7 \mathrm{~cm} \\
& \therefore A B=7 \mathrm{~cm}
\end{aligned}
$$

2.
3. boll of there are alternate angles whionarecqual

Given that $A B$ is parallel to $F D$, calculate the length of $A B$.
using

$$
\begin{align*}
& \frac{A B}{\sin 60}=\frac{6}{\sin 40}=\frac{A C}{\sin 80} \\
& A B=\frac{6}{\sin 40} \times \sin 60=8.0837 \ldots \\
& \therefore A B=8.1 \mathrm{~cm} \text { (lop) } \tag{4}
\end{align*}
$$

3. In triangle $R P Q$,

$$
\begin{aligned}
& R P=8.7 \mathrm{~cm} \\
& P Q=5.2 \mathrm{~cm} \\
& \text { Angle } P R Q=32^{\circ}
\end{aligned}
$$

(a) Assuming that angle $P Q R$ is an acute angle, calculate the area of triangle $R P Q$.
Give your answer correct to 3 significant figures.
using $\left\lvert\, \frac{\sin 32}{5.2}=\frac{\sin Q}{8.7}=\frac{\sin P}{P} \quad \sin Q=\frac{\sin 32}{5.2} \times 8.7 \quad Q=\sin ^{-1} 0.886 \ldots\right.$.

$$
\begin{aligned}
\therefore \hat{P P B} & =180-(62.4+32)=85.6^{\circ} \\
\text { area } & =\frac{1}{2} \times 8.7 \times 5.2 \times \sin 85.6 \\
& =22.55185 \ldots
\end{aligned}
$$

(b) If you did not know that angle $P Q R$ is an acute angle, what effect would this have on your calculation of the area of triangle $R P Q$?
it would le smaller because angle RPQ would be smaller.
4. A Big Wheel is modelled as a circle with centre O and radius 15 metres. The wheel turns in an anticlockwise direction.

The lowest point on the wheel is always 2 metres above horizontal ground.
$O B=15+2=17 \mathrm{~m}$

(a) C is a point on the wheel, h metres above horizontal ground.

Angle $C O B=x^{\circ}$ 灰 $h=O B-O A$
Show that $h=17-15 \cos x^{\circ}=17-15 \cos x$ QED
(b) D is a point on the wheel.

Angle $D O B=120^{\circ}$
Work out the height of D above horizontal ground.
(c) Here is a sketch of the graph $h=17-15 \cos x^{\circ}$ for one complete turn of the wheel.

P is the highest point on the graph.
Work out the coordinates of P.
5. (a) Write down the exact value of $\tan 60^{\circ}$.

(a) \qquad [1]
(b) Find the exact area of this triangle.

$$
\begin{aligned}
\text { area } & =\frac{1}{2} \times 4 \sqrt{3} \times 12 \\
& =24 \sqrt{3}
\end{aligned}
$$

$$
\text { (b) } \ldots 24 \sqrt{3}
$$

6. Calculate x .
triangle $A C D$

$$
\begin{aligned}
& \sin 33=\frac{6.3}{y} \\
& y=\frac{6.3}{\sin 33}=11.5672 \ldots
\end{aligned}
$$

using $a^{2}=b^{2}+c^{2}-2 b c \cos A$ with $\triangle A B C$

$$
\begin{aligned}
& x^{2}= 11.57^{2}+8.4^{2}-2 \times 8.4 \times 11.57 \\
& \times \operatorname{cos52} \\
& x^{2}=84.720 \\
& x=9.204
\end{aligned}
$$

$9-204$
7. Simon cuts the corners off a square piece of card to leave the regular octagon shown below.
O is the centre of the octagon.
$\triangle O A B$ is isosceles so
A and B are vertices of the octagon.

$$
180-45=135 \quad \frac{135}{2}=67.5
$$

$O A=O B=5 \mathrm{~cm}$.
Angle $A O B=45^{\circ}$.

pat (b)

$$
\begin{aligned}
& \sin 67.5=\frac{x}{5} \\
& x=5 \sin 67.5 \\
& x=4.619397 \ldots
\end{aligned}
$$

so height found

$$
\begin{aligned}
& =4.62 \times 2 \\
& =9.23879 \ldots .
\end{aligned}
$$

a) (i) Work out the area of the octagon.
area of $\triangle O A B$

$$
\text { using } \Rightarrow \frac{1}{2} a b \sin C
$$

$$
\begin{aligned}
& \text { OJustMaths } \\
& \begin{aligned}
& \text { octagon }=8^{2} \times \frac{25 \sqrt{2}}{4}=50 \sqrt{2} \\
&=70 \cdot 7106 \ldots \\
& \text { (a)(i) } \ldots 70-7 \ldots(3 . \operatorname{s.f}) . . \mathrm{cm}^{2}[3]
\end{aligned} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 5 \times \sin 45 \\
& =\frac{25 \sqrt{2}}{4}
\end{aligned}
$$

(ii) Work out the area of the original square piece of card.
ming prevas work.

$$
\begin{aligned}
\text { area } & =9.238 \ldots \times 9.238 \ldots \\
& =85.35533 \ldots
\end{aligned}
$$

(ii) \qquad 85 \qquad
\qquad 2 cm [5]
b) Simon now makes a table top using the card as a model.

The sides of the table top are 8 times as long as the sides of the card model.
Find the ratio of the area of Simon's table top to the area of the card model. length scale factor $=8$ area $S F=8^{2}$ volume $S F=8^{3}$ table top: model
b) \qquad
\qquad

OJustMaths

8. In the triangle, angle y is obtuse.

Work out the size of angle y.

9. (a) Sketch the graph of $y=\sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$.

b) (i) Write down the coordinates of the maximum point of $y=\sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$.

ii) Write down the coordinates of the maximum point of $y=3+\sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$.
ii)
c) One solution to the equation $4 \sin x=k$ is $x=60^{\circ}$.
i) Find the value of k.

$$
\sin 60=\frac{\sqrt{3}}{2} \quad 4 \times \frac{\sqrt{3}}{2}=2 \sqrt{3}
$$

$$
\begin{equation*}
\text { c)(i) } k=\ldots \quad 2 \sqrt{3} \tag{2}
\end{equation*}
$$

ii) Find another solution for x in the range $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\sin x C=\frac{\sqrt{3}}{2}
$$

$$
x=0+60^{\circ} \quad x=180^{\circ}-60=
$$

ii) $x=$ \qquad ${ }^{\circ}$ [1]

10 Sketch the graph of $y=\cos x^{\circ}$ for $0 \leq x \leq 360$

11.
(1.) ming
$a^{2}=b^{2}+c^{2}-2 b c \cos A$ $=4.9^{2}+3.8^{2}-2 \times 4.94 .9 \mathrm{~cm}$ $\times 3.8 \times \cos 80$
$a=5.655$

$A B C$ is a triangle.
D is a point on $A B$.
(4) $\frac{D B}{\sin 25}=\frac{5.655}{8 \operatorname{con} 33.53}$
$\therefore D B=4.322$
ana $A B=8 \cdot 122$ Work out the area of triangle $B C D$.

Give your answer correct to 3 significant figures.
area $B C D=$ area $A C B$ - area $A C D$

$$
\begin{equation*}
=\left(\frac{1}{2} \times 8.122 \times 4.9 \sin 80\right)-\left(\frac{1}{2} 3.8 \times 4.9 \times 8 \ln 80\right)=10 \cdot 43 \tag{5}
\end{equation*}
$$

12. a) The graph of $y=\sin x$ is shown for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ On the grid sketch the graph of $y=\sin x-1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

b) The graph of $y=\sin x$ is shown on the grid for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ On this grid sketch the graph of $y=-\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

c) On this grid sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

13.

14. Triangle $A B C$ has area $40 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
\mathrm{AB}= & 2 \mathrm{BC} \\
& 2 x
\end{aligned}
$$

Let $B C=x$

Work out the length of BC.
Give your answer as a surd in its simplest form.

$$
\begin{align*}
& \text { area }=\frac{1}{2} \times 2 x \times x \times \sin 30 \\
& \begin{aligned}
\frac{40 \times 2}{2} & =x^{2} \times \frac{1}{2} \\
\begin{aligned}
& x^{2}=80 \\
& \text { mumpustenatscouk }
\end{aligned} & =\sqrt{80} \\
& =\sqrt{16} \sqrt{5} \\
& =4 \sqrt{5}
\end{aligned} \tag{6}
\end{align*}
$$

$$
4 \sqrt{5}
$$

15. Which expression gives the area, in cm^{2}, of this triangle?

Circle your answer.

16. Two triangular lawns are shown.

Wire fencing is needed for all five sides.

$$
\begin{aligned}
& \cos 40=\frac{x}{100} \\
& x=100 \cos 40 \\
& =76.6 \mathrm{~m}
\end{aligned}
$$

Wire fencing is sold in 50-metre rolls.

$$
\begin{array}{r}
z^{2}=64 \cdot 3^{2}+120^{2}-2 \times 64 \cdot 3 \times 120 \\
\times \cos 30
\end{array}
$$

Work out the number of rolls needed.

$$
\begin{aligned}
& =5171.669 \ldots \\
z & =71.9 \mathrm{~m}
\end{aligned}
$$

$$
\text { Total }=100+120+76.6+64 \cdot 3+71.9=432.8
$$

17.

Kernal is using trigonometry to work out the size of angle x .
He assumes that angle $A B C$ is a right angle.
In fact, the size of angle ABC is 85°
What is the effect of his assumption on the accuracy of his answer?
You must show your working.

If $\hat{A B C}$ is a aught angle.

$$
\begin{aligned}
\sin x & =\frac{6}{10} \\
x & =\sin ^{-1}\left(\frac{6}{10}\right) \\
& =36.87^{\circ}
\end{aligned}
$$

If its 88° we neeato ce the sine Rule

$$
\frac{\sin 85}{10}=\frac{\sin x}{6}
$$

$$
\sin x=\frac{\sin 85}{10} \times 6
$$

$$
x=36.706 \ldots
$$

$$
=36.71^{\circ}
$$ overstatement of the an cure of 0.16°

