Is an element of

Used to show the set of numbers to which x can belong

Natural Numbers

The set of positive integers

$$
\{1,2,3, \ldots\}
$$

Integers

The set of integers (positive and negative, including zero) $\{0, \pm 1, \pm 2, \ldots\}$

Rational Numbers

A number that is rational can be expressed as a fraction $\frac{a}{b}$

Real Numbers

The set of all real numbers, positive and negative, rational and irrational

Identity

Used to show two expressions which are identical, ie equal for all values of x

Approximately

Used to show two expressions or values which are approximately equal

Function

A relation between a set of values for x and their output values

Logarithm

lo g_{a}

The logarithm to the base a of x

Modulus

The modulus of x. The absolute value. (The positive value of x, iqnore any neqative siqn)

Composite function

The effect of applying function g following by function f

Therefore

Abbreviation often used in proofs

Exponential function

The exponential function of x

Natural logarithm

The natural logarithm of x (logarithm to the base e of x)

This implies

Abbreviation often used in proofs

Sigma

n

a_{i}

The sum of $a_{1}+a_{2}+\cdots+a_{n}$

Integral $\int_{a}^{b} f(x) d x$ a

The integral of $f(x)$ between the limits a and b.
Integration is the inverse of differentiation and is the area under the curve.

Double Differentiate $d^{2} y$ $\overline{d x^{2}}$

The expression y had been differentiated with respect to x twice (to find the nature of the turning point)

Factorial

$1 \times 2 \times 3 \times \ldots \times(n-1) \times n$

Binomial Coefficient

The value of $\frac{n!}{r!(n-r)!}$

Differentiate

$d y$ $d x$

The expression y had been differentiated with respect to x (to give the gradient function)

Inverse Function

> The inverse function to the function f

The second derivative

The function f has been differentiated with respect to x twice

The first derivative

The function f has been differentiated with respect to x

Quod erat demonstrandum

Written at the end of a proof. Meaning "That which was to be proved"

Plus/Minus

Used to show that an expression can take both a positive value and a negative value.

Infinity

A number greater than any assignable quantity or countable number

Tends towards

Abbreviation used to show the limit an expression reaches

