

{1, 2, 3, ...}

A number that is rational can be expressed as a fraction $\frac{a}{b}$

The set of all real numbers, positive and negative, rational and irrational

Identity

Used to show two expressions which are identical, ie equal for all values of x

Approximately

Used to show two expressions or values which are approximately equal

Logarithm $log_a x$

The logarithm to the base a of x

Modulus

X

The modulus of x. The absolute value. (The positive value of x, ignore any negative sign)

Natural logarithm

The natural logarithm of x (logarithm to the base e of x)

Integral $\int^{\nu} f(x) \, dx$

The integral of f(x) between the limits a and b. Integration is the inverse of differentiation and is the area under the curve.

The expression y had been differentiated with respect to x twice (to find the nature of the turning point)

Differentiate dy dx

The expression y had been differentiated with respect to x (to give the gradient function)

The inverse function to the function f

The first derivative

The function f has been differentiated with respect to x

Plus/Minus

Used to show that an expression can take both a positive value <u>and</u> a negative value.

Tends towards

Abbreviation used to show the limit an expression reaches