BUIMPER
 "BETWEEN PAPERS 2 AND 3" PRACTICE PAPER (033 to Q65)

HIGHER TIER (SUMMER 2017)

QUESTIONS

NOt A "BEST" GUESS PAPER.

Neither is it a "PREDICTION" ... ONLY THE EXAMINERS KNOW WHAT IS COING TO COME UP! FACT!
You also need to Remember that just because a topic came up on paper 1 or Paper 2 It may still come up on paper 3

WE KNOW HOW IMPORTANT IT IS TO PRACTISE, PRACTISE, PRACTISE SO WE'VE collated a load of questions that weren't examined in the Pearson/edexcel NEW 9-1 GCSE MATHS PAPER 1 AND PAPER 2 but WE CANNOT GUARANTEE HOW a topic will be examined in the final paper Enjoy!

Mel \& Seager
NB: SOME OF THESE QUESTIONS MAY hAVE ALSO BEEN INCLUDED IN THE PAPERS USED BETWEEN PAPERS 1 AND 2 ... THE PRACTISE IS COOD FOR YOU!

Q33.

The diagram is a sketch.
P is the point $(2,4)$
Q is the point $(4,8)$
(a) Find the vector $\overrightarrow{P Q}$

Give your answer as a column vector
$\overrightarrow{Q R}=\binom{6}{-4}$
M is the midpoint of $P Q$.
N is the midpoint of $Q R$.
(b) Find the vector $\overrightarrow{M N}$

Give your answer as a column vector

Q34.

Enlarge the shaded shape by scale factor $-1 / 2$ with centre ($-1,-2$).
(Total for Question is $\mathbf{3}$ marks)

Q35. Ali has two solid cones made from the same type of metal.

The two solid cones are mathematically similar.
The base of cone \mathbf{A} is a circle with diameter 80 cm .
The base of cone \mathbf{B} is a circle with diameter 160 cm .
Ali uses $80 \mathrm{~m} /$ of paint to paint cone \mathbf{A}.
Ali is going to paint cone \mathbf{B}.
(a) Work out how much paint, in $\mathrm{m} /$, he will need.

Questions from Edexcel's Exam Wizard compiled by JustMaths - this is definitely NOT a prediction paper and should not be used as such!

The volume of cone A is $171700 \mathrm{~cm}^{3}$.
(b) Work out the volume of cone B.

Q36. \mathbf{P} and \mathbf{Q} are two triangular prisms that are mathematically similar.

Prism \mathbf{P} has triangle $A B C$ as its cross section.
Prism \mathbf{Q} has triangle $D E F$ as its cross section.
$A C=6 \mathrm{~cm}$
$D F=12 \mathrm{~cm}$
The area of the cross section of prism \mathbf{P} is $10 \mathrm{~cm}^{2}$.
The length of prism \mathbf{P} is 15 cm .
Work out the volume of prism \mathbf{Q}.

Q37.

T and R are two points on a circle centre O.
$P T$ and $P R$ are the tangents to the circle from P.
Angle $T P O=20^{\circ}$.
Work out the size of angle TOR.
You must give reasons for each stage of your working.

Q38. Solve the inequality ${ }^{3-\frac{1}{2} x>x}$

Q39. (a) Solve the inequality $5 e+3>e+12$
(b) On the grid, shade the region defined by the inequality $x+y>1$

Q40. m is an integer such that $-2<m \leq 3$
(a) Write down all the possible values of m.
(b) Solve $7 x-9<3 x+4$

Q41.On the grid show, by shading, the region that satisfies all three of the inequalities

$$
x+y<7 \quad y<2 x \quad y>3
$$

Label the region \mathbf{R}.

(Total for question = 4 marks)
Q42. $k=3 e+5$
(a) Work out the value of k when $e=-2$
(b) Solve $4 y+3=2 y+14$
(c) Solve $3(x-5)=21$

$$
\begin{equation*}
x=\text {. } \tag{2}
\end{equation*}
$$

$-3<n<4$
n is an integer.
(d) Write down all the possible values of n.
(Total for Question is $\mathbf{8}$ marks)
Q43. Dan does an experiment to find the value of $п$.
He measures the circumference and the diameter of a circle.
He measures the circumference, C, as 170 mm to the nearest millimetre.
He measures the diameter, d, as 54 mm to the nearest millimetre.
Dan uses $\Pi=c / d$ to find the value of Π.
Calculate the upper bound and the lower bound for Dan's value of $п$.

Q44. (a) Complete this table of values for $y=x^{3}+2 x-1$

x	-2	-1	0	1	2
y		-4			11

(b) On the grid, draw the graph of $y=x^{3}+2 x-1$

Total for Question is $\mathbf{4}$ marks)
Q45. The diagram shows a solid wooden sphere.

Diagram NOT
accurately drawn

The radius of the sphere is 2 cm .
The mass of the sphere is 45 grams.
Wood will float on the Dead Sea only when the density of the wood is less than $1.24 \mathrm{~g} / \mathrm{cm}^{3}$.
Will this wooden sphere float on the Dead Sea?

Q46. Steve travelled from Ashton to Barnfield.
He travelled 235 miles, correct to the nearest 5 miles.
The journey took him 200 minutes, correct to the nearest 5 minutes.
Calculate the lower bound for the average speed of the journey.
Give your answer in miles per hour, correct to 3 significant figures.
You must show all your working.
\qquad mph
(Total for question = 4 marks)
Q47. The diagram shows a container for grain.

The container is a cylinder on top of a cone.
The cylinder has a radius of 3 m and a height of $h \mathrm{~m}$.
The cone has a base radius of 3 m and a vertical height of 4 m .
The container is empty.
The container is then filled with grain at a constant rate.
After 5 hours the depth of the grain is 6 metres above the vertex of the cone.
After 9 hours the container is full of grain.
Work out the value of h.
Give your answer as a fraction in its simplest form.
You must show all your working.

Q48.

Diagram NOT
accurately drawn
$A C E$ and $B C D$ are straight lines.
$A B$ is parallel to $D E$.
(a) Calculate the length of $C D$.
(b) Calculate the length of $A B$.

The area of triangle $A B C=T \mathrm{~cm}^{2}$
(c) Find the area of triangle CDE in terms of T.

Q49. Triangles $A B C$ and $A C D$ are similar.

Diagram NOT accurately drawn

Angle $B A C=$ angle CAD.
Angle $A B C=$ angle $A C D$.
$A B=5 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$.
(a) Calculate the length of $A D$.

The area of triangle $A B C$ is $12 \mathrm{~cm}^{2}$
(b) Calculate the area of triangle $A C D$.

Q50. PTR and QTS are chords of a circle.

Calculate the value of x.

$$
x=
$$

\qquad

Q51. A bag contains x counters.
7 of the counters are blue.
Sam takes at random a counter from the bag and does not replace it. Jill then takes a counter from the bag.
The probability they both take a blue counter is 0.2
(a) Form an equation involving x.

Show that your equation can be expressed as $x^{2}-x-210=0$

Calculate the value of x.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

Q52. Each student in a group of 32 students was asked the following question.
"Do you have a desktop computer (D), a laptop (L) or a tablet (T)?"
Their answers showed that
19 students have a desktop computer
17 students have a laptop
16 students have a tablet
9 students have both a desktop computer and a laptop
11 students have both a desktop computer and a tablet
7 students have both a laptop and a tablet
5 students have all three.
(a) Using this information, complete the Venn diagram to show the number of students in each appropriate subset.

One of the students with both a desktop computer and a laptop is chosen at random.
(b) Find the probability that this student also has a tablet.

Q53. The Venn diagram shows a universal set \mathscr{E} and three sets X, Y and Z.

The numbers shown represent numbers of elements.
$\mathrm{n}\left(X^{\prime}\right)=14$
$\mathrm{n}(Z)=14$
(a) Complete the Venn diagram.
(b) Find the value of
(i) $\mathrm{n}(X \cup Z)$
(ii) $\mathrm{n}\left(X \cap Y^{\prime}\right)$

Q54. A and B are two sets.

$$
\begin{aligned}
\mathrm{n}(\mathscr{E}) & =36 \\
\mathrm{n}(B) & =21 \\
\mathrm{n}(A \cap B) & =8 \\
\mathrm{n}\left(A^{\prime}\right) & =18
\end{aligned}
$$

(a) Complete the Venn diagram to show the number of elements in each region of the Venn diagram.

(b) Find $\mathrm{n}(A \cup B)$
(c) Find $\mathrm{n}\left(A \cap B^{\prime}\right)$

Q55. $\mathscr{E}=1,2,3,4,5,6,7,8,9,10,11,12,13$
$A=3,7,11,13$
$B=3,6,9,12,13$
$C=2,3,5,6,7,8$
(a) Complete the Venn diagram.

(b) List the members of the set $B^{\prime} \cap C$
(c) List the members of the set $(A \cup C)^{\prime} \cap B$
(d) Find $\mathrm{n}\left(A^{\prime} \cap B^{\prime}\right)$

Q56.

The diagram shows a quadrilateral $A B C D$.
$A B=B D=A D$.
$C B=C D$.
Angle $B C D=78^{\circ}$
Work out the size of angle $A B C$.
Questions from Edexcel's Exam Wizard compiled by JustMaths - this is definitely NOT a prediction paper and should not be used as such!
\qquad

Q57. (a) Work out $2 \frac{1}{4} \times 3 \frac{1}{3}$
Give your answer as a mixed number in its simplest form.
\qquad (3)
(b) Write the numbers 3, 4, 5 and 6 in the boxes to give the greatest possible total. You may write each number only once.

Q58.

$A B E$ and $C B D$ are straight lines.
Show that triangle $A B C$ is an isosceles triangle.
Give a reason for each stage of your working.

Q59. Soap powder is sold in three sizes of box.

A 2 kg box of soap powder costs $£ 1.89$
A 5 kg box of soap powder costs $£ 4.30$
A 9 kg box of soap powder costs $£ 8.46$
Which size of box of soap powder is the best value for money?
You must show how you get your answer.
(Total for question = $\mathbf{3}$ marks)
Q60. Asif is going on holiday to Turkey.
The exchange rate is $£ 1=3.5601$ lira.
Asif changes $£ 550$ to lira.
(a) Work out how many lira he should get.

Give your answer to the nearest lira.

Asif sees a pair of shoes in Turkey.
The shoes cost 210 lira.
Asif does not have a calculator.
He uses $£ 2=7$ lira to work out the approximate cost of the shoes in pounds.
(b) Use $£ 2=7$ lira to show that the approximate cost of the shoes is $£ 60$
(c) Is using $£ 2=7$ lira instead of using $£ 1=3.5601$ lira a sensible start to Asif's method to work out the cost of the shoes in pounds?

You must give a reason for your answer.

Q61. Given that $3(x-c)=2 x+5$ where c is an integer, show that x cannot be a multiple of six.
(Total for question = 3 marks)

Q62. The functions f and g are such that

$$
f(x)=1-5 x \quad \text { and } \quad g(x)=1+5 x
$$

(a) Show that $\mathrm{gf}(1)=-19$
(b) Prove that $\mathrm{f}^{-1}(x)+\mathrm{g}^{-1}(x)=0$ for all values of x.

Q63. (a) Write $2 x^{2}+16 x+35$ in the form $a(x+b)^{2}+c$ where a, b, and c are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=2 x^{2}+16 x+35$

Q64. The graph shows information about the velocity, $v \mathrm{~m} / \mathrm{s}$, of a parachutist t seconds after leaving a plane.

(a) Work out an estimate for the acceleration of the parachutist at $t=6$
(b) Work out an estimate for the distance fallen by the parachutist in the first

12 seconds after leaving the plane.
Use 3 strips of equal width.
m (3)
(Total for question is $\mathbf{5}$ marks)

Q65. (a) Show that the equation $x^{3}+4 x=1$ has a solution between $x=0$ and $x=1$
(b) Show that the equation $x^{3}+4 x=1$ can be arranged to give $x=\frac{1}{4}-\frac{x^{3}}{4}$
(c) Starting with $x^{0}=0$, use the iteration formula $x_{n+1}=\frac{1}{4}-\frac{x_{n}{ }^{3}}{4}$ twice, to find an estimate for the solution of $x^{3}+4 x=1$

