BUMPER "BETWEEN PAPERS" PRACTICE

SUITABLE FOR HIGHER TIER ONLY

Thanks to: Davn Denge, Enma Weston, Kieran McCauland, Donald Walker, Janet Annetts,

dameswood + probably people l'ie musedout.

SUMMER 2019

SCLUTIONS
NOT A "BEST" GUESS PAPER.

myheroeshir sendingme your solutions Melk,

NEITHER IS IT A "PREDICTION" ... ONLY THE EXAMINERS KNOW WHAT IS GOING TO COME UP! FACT!
YOU ALSO NEED TO REMEMBER THAT JUST BECAUSE A TOPIC CAME UP ON PAPER 1 IT MAY STILL COME
UP ON PAPERS 2 OR 3 ...

WE KNOW HOW IMPORTANT IT IS TO PRACTICE, PRACTICE, PRACTICE SO WE'VE COLLATED A LOAD OF QUESTIONS THAT WEREN'T EXAMINED IN THE AQA 9-1 GCSE MATHS PAPER 1 BUT WE CANNOT GUARANTEE HOW A TOPIC WILL BE EXAMINED IN THE NEXT PAPERS ...

ENJOY! Mel & Seager

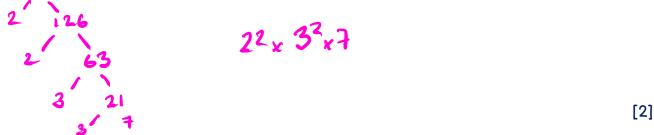
2. Use the quadratic formula to solve $5x^2 + 11x - 2 = 0$

Give your solutions to 2 decimal places.

$$a = 5$$
 $b = 11$
 $c = -2$
 $c = -11 + 561$
 $c = -11 - 561$
 $c = -11 - 561$
 $c = -2.37$

3. y is directly proportional to x and k is a constant.

Circle the correct equation.


correct equation.

$$y = x + k$$
 $y = kx$ $y = \frac{k}{x}$ $y = x - k$

4. Written as the product of its prime factors

$$672 = 2^5 \times 3 \times 7$$

(a) Write 252 as the product of its prime factors.

(b) Work out the value of the highest common factor of 672 and 252

$$2^{5} \times 3 \times 7$$
 HCF= $2^{2} \times 3 \times 7 = 4 \times 3 \times 7 = 84$

5. Show that $\frac{2x+1}{3} + \frac{5x-2}{2}$ simplifies to $\frac{19x-4}{6}$

$$\frac{2(2x+1)+3(5x-2)=4x+2+15x-6}{6} = \frac{4x+15x+2-6}{6} = 19x-4$$
[2]

6. Expand and simplify (2x + 5)(2x - 5)(3x + 7)

expand 2 brackets
$$4x^2 + 10x^2 - 25$$

Eastat with $(4x^2 - 25)(3x + 7) = 12x^3 + 28x^2 - 75x - 175$

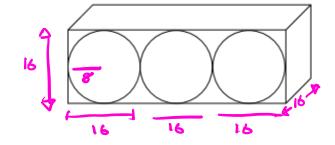
[3]

[1]

[1]

rationalize the denominators first

7. Write
$$\frac{26}{\sqrt{2}} - \frac{12}{\sqrt{18}} + 2\sqrt{50}$$
 in the form $a\sqrt{2}$ where a is an integer


8. Prove that the sum of four consecutive whole numbers is always even.

- 9. Volume of a sphere = $\frac{4}{3} \pi r^3$ where r is the radius.
- a) Work out the volume of a sphere of radius 8 cm

[2]

b) Three spheres of radius 8 cm are packed tightly into a cuboid as shown.

Work out the volume of the cuboid.

[4]

10. To complete a task in 15 days a company needs

4 people each working for 8 hours per day.

Total hours = 15×4×8 = 480

The company decides to have

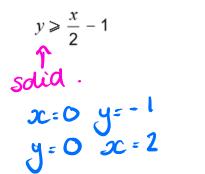
5 people each working for 6 hours per day. 5x6 = 30 hours.

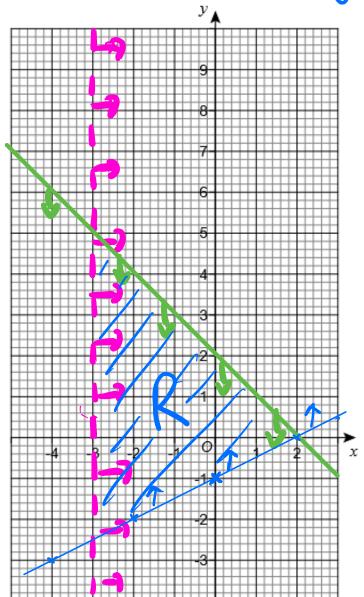
Assume that each person works at the same rate.

(a) How many days will the task take to complete? 480+30 = 16 days

You must show your working.

[1]


[4]


11. The region R satisfies the three inequalities

x > -3dolled tre

Show the region R on the grid.

$$x+y \leqslant 2$$
solid

12. w is directly proportional to y

w is inversely proportional to
$$x^2$$
 $\omega = \frac{2}{2}$

a) When y = 4, w = 14

Work out the value of w when y = 9

b) When x = 2, w = 5

Work out the value of w when x = 10

$$\omega = \frac{k}{2^{2}} \qquad \sum_{i=1}^{2} k_{i} \leq x_{i} = 20$$

$$\omega = \frac{20}{10^{2}} \qquad = \frac{20}{100} = 0.2$$
[3]

13. Show that $\frac{2w+4}{w^2-25} \times \frac{w+5}{w^2+3w+2} \times (3w^2-16w+5)$

Simplifies to $\frac{aw+b}{cw+d}$ where a, b, c and d are integers.

$$\frac{2(\omega+2) * \omega+5}{(\omega+5)(\omega-5)} * (3\omega-1)(\omega-5)$$

$$\frac{2(\omega+2) * (\omega+1)(\omega+2)}{(\omega+5)(\omega-5)} * (3\omega-1)(\omega-5)$$

$$\frac{2(\omega+2) * (\omega+5) * (3\omega-1)(\omega-5)}{(\omega+5)(\omega-5)} = \frac{2(3\omega-1)}{(\omega+1)} = \frac{6\omega-2}{(\omega+1)}$$

$$\frac{2(\omega+2) * (\omega+5) * (\omega+1)(\omega+2)}{(\omega+5)(\omega-5)} = \frac{2(3\omega-1)}{(\omega+1)} = \frac{6\omega-2}{(\omega+1)}$$

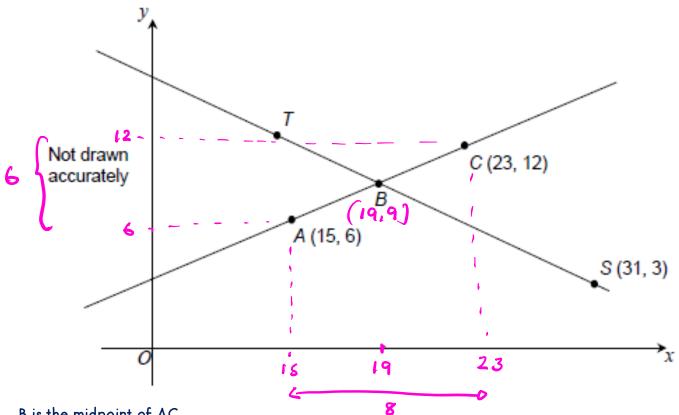
14. An approximate solution to an equation is found using this iterative process.

$$x_{n+1} = \frac{(x_n)^3 - 3}{8}$$
 and $x_1 = -1$

a) Work out the values of x_2 and x_3

$$x_{2} = (-1)^{3} - 3 = -\frac{4}{8} - \frac{1}{2}$$

$$x_{2} = -\frac{1}{2}$$


$$x_{3} = (-\frac{1}{2})^{3} - 3 = -0.390625$$

$$x_{3} = -0.390625$$
[2]

b) Work out the solution to 6 decimal places.

USE
$$\frac{\text{ANS}}{8}$$
 bullon $\frac{1}{2}$ $\frac{(\text{ANS})^3 - 3}{8}$ $\frac{3}{2}$ $20:-0.381966 (6dp) [1]$

15. Solve algebraically the simultaneous equations

B is the midpoint of AC.

TB : BS = 2 : 3

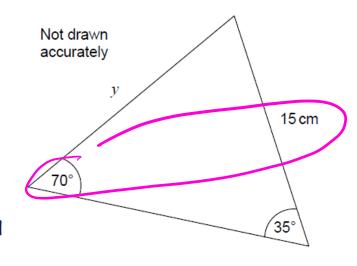
Work out the coordinates of T.

TB: 6S

2 3
$$x$$

11 19 31 $x = (12)^{-4}$

2 13 $y = (13)^{-4}$


3 $x = (12)^{-4}$

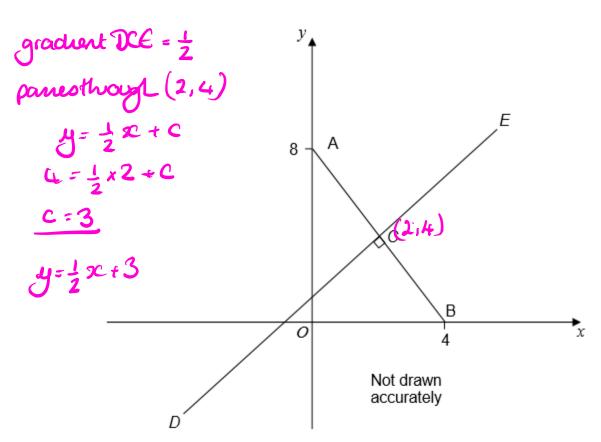
11 $x = (11, 13)^{-4}$

T= (11, 13)

17. Work out the value of y.

$$y = \frac{15}{50.70} \times 80.35$$

= 9.155809
= 9.16cm (3sf) [2]



18. ACB is a straight line.

A is the point (0, 8), and B is the point (4, 0)

C is the midpoint of AB.

Line DCE is perpendicular to line ACB.

Work out the equation of line DCE.

19. Square OABC is drawn on a centimetre grid.

OABC is enlarged, scale factor 2, centre (0, 0)

Circle the number of invariant points on the perimeter of the square.

2 0

20. The area of the triangle is $\sqrt{300}$ cm².

Calculate the length of AB.

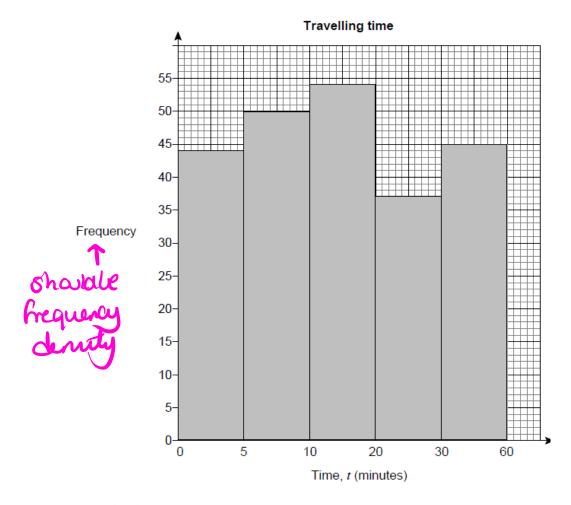
$$(x^2,3x) \times \frac{13}{2} = 2\sqrt{300}$$

(x + 3) cm

4

60°

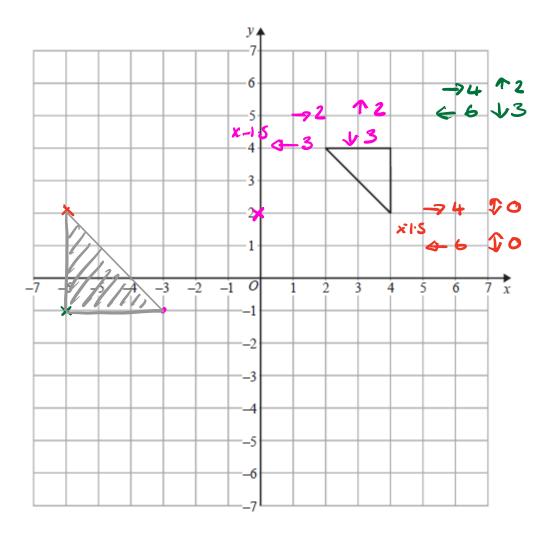
2=82+52-(2x8x5xccs60)


[1]

21. Joe asked 230 students how long it took them to travel to school.

The results are shown in the table.

Travelling time, t (minutes)	Number of students
0 < <i>t</i> ≤ 5	44
5 < t ≤ 10	50
10 < t ≤ 20	54
20 < t ≤ 30	37
30 < t ≤ 60	45


This is Joe's attempt to draw a histogram to show the data.

Make two criticisms of his histogram.

Criticism 1 med frequency united of frequency denuty

Criticism 2 The bas should edifferent widths a linear scale should have been med on the I axis

On the grid, enlarge the triangle by scale factor $-1\,\frac{1}{2}$, centre (0, 2)

[2]