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This study investigates whether word problems and mathematically 

expressed items can be used interchangeably regardless of their linguistic 

complexities. A sample of sixth grade students was given two forms of a 

mathematics assessment. The first form included mathematics items with 

mathematical terms, expressions, and equations whereas the second form 

included the same items as word problems. Explanatory item response 

modeling was used for examining the impact of item type and gender on 

difficulty levels of items and test scores. The results showed that word 

problems were easier than mathematically expressed items. Gender and its 

interaction with the linguistic complexity of mathematics items did not seem 

to have any impact on student performance on the test. 

 

Introduction 

The effect of language on test performance has received great 

attention in educational research (Abedi & Lord, 2001; Huynh, 

Meyer, & Gallant, 2004; Ryan & Chiu, 2001; Spanos, Rhodes, 

Dale, & Crandall, 1988). Previous studies about the effect of 

language and linguistic complexity have suggested that changes in 

item type based on linguistic complexity may result in an 

unintended impact on students’ test performance; and further some 

groups of examinees may get differentially affected by those 

changes. The findings of these studies also demonstrate the 
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significant connection between different subject areas (e.g., 

reading, mathematics, and science) and the language. Mathematics 

is a unique example of the connection between numbers and 

words. Aiken (1972) and Wakefield (2000) described mathematics 

as a specialized language with its own concepts and symbols that 

must be learned. Schleppegrell (2007) describes mathematics as a 

language-dependent subject, and points out that language is 

implicated in the learning of mathematics.  

 

Although mathematics concerns topics that are beyond the 

capabilities of native languages, it still requires reading 

comprehension skills to understand the content. In addition to 

symbols, operations, equations and so forth, one should know how 

to read and write in a language in which the symbolic language of 

mathematics is embedded. In most cases, a certain level of reading 

ability may be required to understand and solve a mathematics 

problem. Complex mathematical vocabulary can interfere with 

solving a mathematics item correctly. For instance, students who 

take mathematics items with easy syntax and easy vocabulary can 

obtain better scores than students who take mathematics items 

with more complex syntax and difficult vocabulary (Linville, 

1970). Abedi and Lord (2001) found that English language 

learners (ELLs) tend to obtain lower scores on standardized 

mathematics tests than students who are fluent in English, which 

clearly indicates the language dependency of mathematics. 

 

In education, test developers use different item types for different 

purposes such as increasing test security or developing an item 

bank. Different types of items can also be used to create an 

alternative test form. In a mathematics test, an item can be 

presented by using graphics, numbers, symbols, or equations. As 

an accommodation or for the purpose of creating a simplified 

version of a mathematics item for students who struggle with the 

mathematical language or terms, more verbal and visual 

components can be included in the item. For instance, a 

mathematics item with a complex language and notations can be 

revised by removing difficult symbols, notations, etc. and adding 
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more verbal components. In this way, the problem can be 

explained in a context of a word problem. Munro (1979) uses the 

following example to explain how a mathematics item can be 

simplified in terms of its language: 

 

   Item with mathematical 

expressions: 

Item with verbal expressions: 

      If   
𝑥

4
= 3, what is x? A quarter of a certain number is 

3. What is that number?  

 

According to Munro (1979), in solving the problem of x/4=3, a 

common error that students tend to make is to infer that x is 3/4. 

However, when the same item is asked using a simpler language, 

the student can code this mathematical statement logically and 

thus the student is likely to conclude that x is 3/4. 

 

Despite the advantages of word problems, it is not easy to 

determine whether this type of items on a mathematics test can 

serve their expected functions. When a word problem is used on 

the test, examinees need to use both mathematics and reading 

skills to solve the problem. Changing a simply written 

mathematics item into a verbose mathematics item may lead to 

unintended consequences because a word problem might be easier 

for students with strong reading skills than those who do not have 

adequate reading skills. Therefore, this item would function 

differently from an item with the same content but less verbal 

components. Such an item may cause item bias or differential item 

functioning (DIF) in a mathematics assessment. Bias is a crucial 

issue not only because of fairness but also because it threatens the 

comparability of test scores (Pomplun & Omar, 2001).  

 

The problems described above bring us to the question of whether 

two forms of a mathematics item (e.g., a word problem and a 

computational item) that measure the same skill emerging from 

the same goal can be used interchangeably. To date, approaches to 

testing changes in item type or language in mathematics tests have 

been limited to procedures like DIF, test reliability, and factor 
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analysis. For example, Doolittle and Cleary (1987) conducted a 

DIF analysis on the items of the American College Testing 

Assessment Mathematics Usage Test and found that female 

students performed better on algebra items and poorer on word 

problems. In a similar study, O’Neill and McPeek (1993) found 

that females were better on algebra items than males while males 

performed better on mathematics problem solving and word 

problem items than females. Scheuneman and Grima (1997) also 

suggested that the linguistic properties of test items may influence 

how the items function for male and female examinees.  

 

This study aims to address the question of whether word problems 

and mathematics items with mathematical notations can be used 

interchangeably in a mathematics assessment. Also, the interaction 

between item type and gender was examined to identify if test bias 

occurs due to linguistic characteristics of mathematics items. As 

Li, Cohen and Ibarra (2004) suggested, structural characteristics of 

mathematics items may have some utility in predicting gender bias 

in mathematics assessments. A recently developed approach, 

explanatory item response modeling, was used for examining the 

effect of item type on difficulty levels of items and students’ test 

performance. The explanatory item response modeling framework 

was explained in more detail in the following section.   

 

Theoretical Framework 
 

Item response theory (IRT) is a modern test theory based on the 

probabilistic distribution of examinees’ underlying latent trait (θ) 

at the item level. In IRT, the relationship between an examinee’s 

item performance and ability underlying item performance can be 

described by an item characteristic curve. An example of an item 

characteristic curve is presented in Figure1. 



Language Factor in Mathematics Assessments 

 
586 

 
Figure 1. Item characteristic curve of a dichotomously scored item 

 

 

According to Figure 1, as the level of an examinee’s ability 

increases, the probability of responding the item correctly 

increases as well. The point on the ability scale where the 

probability reaches 0.5 indicates the average difficulty level of the 

item. Because the item characteristic curve places item difficulty 

and person ability on the same scale, which usually ranges from -5 

to +5, it is possible to see the interaction between the difficulty 

level of an item and the probability to respond to the item 

correctly depending on examinees’ ability levels.  

 

There is a variety of IRT models depending on the number of item 

parameters (e.g., Rasch model, two-parameter logistic model, and 

three-parameter logistic model), item type (e.g., dichotomous vs. 

polytomous), number of latent traits to be estimated (e.g., 

unidimensional vs. multidimensional IRT models), and data 

structure (e.g., multilevel IRT models). In addition, there is 

another family of IRT models that are used to solve practical and 

challenging educational problems by generalizing the traditional 

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Item response function

Ability

P
ro

b
a

b
il
it
y
 o

f 
a

 c
o

rr
e

c
t 
re

s
p

o
n

s
e



Adnan Kan and Okan Bulut 

 

 

587 

IRT models (Fox, 2004). De Boeck and Wilson (2004) introduced 

an IRT framework based on generalized linear modeling and 

named it as explanatory item response modeling (EIRM). Within 

the EIRM framework, dichotomous and polytomous IRT models 

can be extended by adding predictors at different levels (e.g., item, 

person, and person-by-item) to examine the effects of various 

covariates on item difficulties and latent traits.  

 

Explanatory Item Response Modeling  
 

As explained earlier, EIRM can be defined as a special case of 

generalized linear modeling (Rijmen, Tuerlinckx, De Boeck, & 

Kuppens, 2003; De Boeck & Wilson, 2004; Kamata, 2001). When 

IRT models are cast within the framework of generalized linear 

mixed-effect modeling (GLMM), it becomes possible to examine 

both within-person differences in item response probabilities, and 

between-person differences in the latent constructs being 

measured. The advantage of the EIRM approach over the 

traditional IRT models is that it provides a framework for both the 

psychometric and statistical analyses of items, persons, and related 

covariates (Briggs, 2008). 

 

To explain explanatory IRT modeling in more detail, this study 

follows the same notation used in De Boeck and Wilson (2004). In 

explanatory IRT models, persons are clusters, items are the 

repeated observations nested within persons, and dichotomous 

responses are the dependent variable in a multilevel data structure. 

Responses are denoted as Ypi = 0 or 1, with p = 1,…., P as an 

index for persons, and i = 1, ……, I as an index for items. Ypi has 

a Bernoulli distribution with πpi, which is the expected value of Ypi 

based on the probability. A link function is used to place πpi into a 

continuous scale between -∞ and +∞. Equation 1 shows the 

formulation of the logit link function. 

 

𝜂𝑝𝑖 = 𝑙𝑛 (
𝜋𝑝𝑖

1 − 𝜋𝑝𝑖
) (1) 
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Since generalized linear models are not capable of estimating item 

discrimination and guessing parameters, only the Rasch model 

(Rasch, 1960) and its variants can be estimated. Using the logit 

link function in Equation 1, the Rasch model can be written in a 

GLMM form as follows:  

𝜂𝑝𝑖 = 𝜃𝑝𝑋𝑖0 +∑𝛽𝑖𝑋𝑖𝑘

𝐾

𝑘=1

+ 𝜀𝑖; (2) 

 

where 𝑋𝑖0 = 1 for all items, 𝑋𝑖𝑘 is a diagonal matrix where 

𝑋𝑖𝑘 = 1 if i=k and 0 otherwise, 𝜃𝑝 is the latent trait for person p as 

𝜃𝑝~𝑁(0, 𝜎𝜃
2), 𝛽𝑖 refers to difficulty level of item i, and 𝜀𝑖 is the 

error term for each item as 𝜀𝑖~𝑁(0, 𝜎𝜀
2). 

 

 

When there is at least one item-related covariate, person-related 

covariate, or person-by-item covariate added to Equation 2, the 

new model becomes an explanatory IRT model. The equation for 

the explanatory model with these covariates can be written as: 

𝜂𝑝𝑖 =∑𝜃𝑝𝑍(𝑝,𝑖)𝑗

𝐽

𝑗=1

+∑𝛽𝑘𝑋(𝑝,𝑖)𝑘

𝐾

𝑘=1

+∑𝛽𝑘𝑊𝑝ih

𝐻

ℎ=1

+ 𝜀𝑖; (3) 

 

where 𝑍(𝑝,𝑖)𝑗 is a person covariate (e.g., 𝑍(𝑀𝑎𝑙𝑒,𝑖)𝑗 = 1 and 0 

otherwise), 𝑋(𝑝,𝑖)𝑘 is an item covariate (e.g. 𝑋(𝑊𝑜𝑟𝑑𝑃𝑟𝑜𝑏𝑙𝑒𝑚,𝑖)𝑘 =

1, and 0 otherwise), and 𝑊𝑝ih is an interaction term between an 

item covariate and a person covariate. The effects of these 

covariates can be estimated as either fixed or random effects in the 

generalized linear model in Equation 3. Figure 2 demonstrates the 

relationship between the components of an explanatory item 

response model. 
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Figure 2. A visual illustration of an explanatory item response model.  

Reprinted from “Explanatory item response models: A generalized linear and nonlinear approach”  

by P. De Boeck and M. Wilson (Eds.), 2004, New York: Springer. Reprinted with permission. 
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Explanatory IRT models with item, person, and person-by-item 

covariates can be estimated using the lme4 package (Bates, 

Maechler & Bolker, 2014) in R (R Development Core Team, 

2014). Although the lme4 package is primarily used for estimating 

linear mixed-effects models, Rasch and explanatory IRT models 

can also be estimated using the nested structure of item responses. 

The lmer function in the lme4 package estimates item and person 

parameters by defining a binomial distribution and a logit link 

function for the dependent variable, which is dichotomous item 

responses. The lmer function allows estimating item difficulties of 

explanatory IRT models either with an error term (i.e., 

homoscedasticity of the error variance) or without an error term 

(i.e., no homoscedasticity assumed), which means that item 

difficulties can be either fixed or random effects as specified in 

Equation 3. It should be also noted that item difficulty in the 

GLMM framework becomes an indicator of item easiness as 

opposed to item difficulty parameter in traditional IRT models.  

 

Method 

Sample and Data Collection 
 

The sample of this study consisted of sixth-grade students enrolled 

for the mathematics course in middle schools in Turkey. A total of 

671 students (344 male, 327 female) were randomly selected from 

ten middle schools. Data collection was completed in two test 

administrations. A counterbalanced design was used by assigning 

the students randomly into two groups. In the first administration, 

group 1 (N=335) received the test with only mathematically-

expressed items, and group 2 (N=336) received the test that 

included only word problems. In the second administration, group 

1 was given the word problems, and group 2 was given the 

mathematically expressed items. There was a four-week interval 

between the first and second test administrations to reduce the 

carryover and practice effects. 
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Instrument 

 

Two forms of a mathematics test were developed by the 

researchers in cooperation with the mathematics teachers. Each 

test consisted of twenty five multiple-choice items with five 

response options. The content of the tests was pre-algebra and 

algebra topics. The first form consisted of items that were based 

on mathematical terms, formulas, and mathematical expressions. 

The items were complex in terms of the mathematical language 

and vocabulary. The second form of the test included the same 

items, but this time the items were written as word problems. The 

items were simplified in terms of mathematical language while the 

mathematical operations needed to respond to the items remained 

the same. The underlying task and solution of an item in the first 

test form were the same as the corresponding item in the other 

form, which allowed for examining the effect of language 

complexity in the items by controlling for any task difference 

across two forms. Figure 3 shows an example item from the two 

forms of the test. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. An example item written as word problem and a 

mathematically-expressed item 

 

Mathematically-expressed item 

What is the least common multiple of 12 and 18? 

 

Word problem 

A patient takes his first and second medicines every 12 and 18 

hours, respectively. After he takes both medicines at the same 

time, how many hours later is he going to take two medicines 

together again? 
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Both forms of the item emphasize the same underlying task but in 

different ways. The mathematically expressed form of the item  

uses the mathematical term of “least common multiple” while the 

word problem form of the same item explains the task within a 

story but still requires the same mathematical operation. Thus, the 

two forms of the item seem different in terms of linguistic 

complexity but they still require similar mathematical operations 

and lead to the same solution. 

 

Data Analysis 

 

Data analysis for this study consisted of three steps. In the first 

step, descriptive item and test statistics were calculated to examine 

if there was any problematic item in the test. Test reliability, mean 

and standard deviation of summed correct responses, and point 

biserial correlations of items were obtained.   

 

In the second step, item fit for the Rasch model was examined 

because in order to run explanatory IRT models, Rasch model 

should fit to the data first. Item fit is an indication of how well 

items perform according to the underlying IRT model being 

tested. Responses to the two test forms (i.e., mathematically 

expressed items and word problems) were analyzed separately 

using the Rasch model in Winsteps (Linacre, 2006). The INFIT 

and OUTFIT fit indices provided by Winsteps, were used to 

determine the appropriateness of the Rasch model for the items. 

INFIT and OUTFIT indicate the extent which the data match with 

the prescriptions of the IRT model (Bond & Fox, 2001). Mean 

squares (MNSQ) of INFIT and OUTFIT are expected to be 1.00. 

Values greater or less than 1 indicate the degree of variation from 

the expected score (Osteen, 2010). MNSQs for adequate item fit 

should be between .75 and 1.3 (Adams & Khoo, 1996; Smith, 

Schumacker, & Bush, 1998). In addition to checking item fit, item 

difficulties and person abilities from the two test forms were 

compared descriptively.  
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In the last step of data analysis, three explanatory IRT models with 

an item covariate (item type), a person covariate (gender), and a 

person-by-item covariate (item type-gender interaction) were 

estimated using the lme4 package (Bates, Maechler, & Bolker, 

2014) in R (R Development Core Team, 2014). In all explanatory 

models, person abilities and item difficulties were estimated as 

random effects with a mean of zero and other covariates were 

estimated as fixed effects. The two forms (i.e., word problems and 

mathematically expressed items) were used together to examine 

the effect of item type on item difficulties in the same model.  

 

To compare the three explanatory IRT models, Akaike's 

information criterion (AIC), Schwartz’s information criterion 

(BIC), and deviance statistics were used. AIC and BIC provide a 

means for model selection by measuring of the relative quality of 

a statistical model for a given set of data. The model with smaller 

AIC and BIC values indicates a better model fit compared to the 

other models. Deviance statistics also can be used for comparing 

nested models with a chi-square test. For two nested models, the 

difference between the deviances has a large-sample chi-square 

distribution with degrees of freedom equal to the difference in the 

number of parameters estimated in the two models. The null 

hypothesis of whether the model with fewer estimated parameters 

fits the data equally well as the model with more parameters is 

tested in the chi-square test.  
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Results 

 Descriptive statistics for mathematically-expressed items and 

word problems are presented in Table 1 and Table 2, respectively. 

According to Table 1, it seems that the test form with 

mathematically expressed items were slightly more difficult than 

the test form with word problems although the average number of 

correct responses were very similar across the forms. Both test 

forms indicated high internal consistency based on the coefficient 

alpha values.  

 

Table 1. Descriptive Statistics for Mathematically Expressed Items 

and Word Problems 

Items K  N  


X  S  Alpha Average 

Difficulty 
Skewness Kurtosis 

ME 25 671 14.15 6.65 .90 .566 .34 -1.284 

WP 25 671 14.75 6.74 .91 .590 -.001 -1.318 

ALL  50 671 28.90 12.81 .95 .578 .065 -1.317 

Note: ME: Mathematically expressed items, WP: Word problems, ALL: 

All items; K: Number of items, N: Number of students, �̅�= Mean raw 

score, S: Standard deviation of raw scores, Alpha: Coefficient alpha; 

M.D: Mean Difficulty 

 
Table 2 presents item difficulty (i.e., proportion correct), item 

discrimination, and point-biserial correlation for the two forms. 

Results indicated that item statistics obtained from the 

mathematically expressed items and word problems were mostly 

similar. The difference between item difficulties from the two 

forms ranged from 0 to .18. Fairly large differences across the two 

forms were found in item 7 (.11), item 9 (.13) and item 23 (.18). 

For these items, word problems were more difficult than 

mathematically expressed items. All of the items had fairly high 

item-total correlations. Word problems seemed to have slightly 

higher item-total correlation than mathematically expressed items. 

None of the items were found problematic based upon the initial 

item analysis.  
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Table 2. Item Statistics for Mathematically Expressed Items and 

Word Problems 
Item 

 

Word Problems  Mathematically Expressed 

Items 

p rpb D  p rpb D 

1 0.51 0.66 0.78  0.54 0.63 0.74 

2 0.43 0.59 0.69  0.43 0.58 0.67 

3 0.41 0.55 0.64  0.36 0.48 0.52 

4 0.66 0.44 0.48  0.69 0.42 0.46 

5 0.35 0.60 0.65  0.33 0.56 0.60 

6 0.53 0.49 0.57  0.54 0.40 0.43 

7 0.82 0.47 0.43  0.71 0.53 0.57 

8 0.74 0.52 0.51  0.72 0.50 0.53 

9 0.51 0.54 0.59  0.38 0.50 0.55 

10 0.43 0.56 0.63  0.48 0.65 0.76 

11 0.45 0.53 0.63  0.43 0.54 0.63 

12 0.72 0.56 0.60  0.69 0.57 0.62 

13 0.69 0.63 0.67  0.63 0.48 0.54 

14 0.48 0.61 0.71  0.49 0.51 0.58 

15 0.72 0.61 0.65  0.65 0.68 0.78 

16 0.57 0.59 0.66  0.60 0.60 0.71 

17 0.61 0.61 0.70  0.63 0.62 0.70 

18 0.73 0.39 0.41  0.72 0.35 0.35 

19 0.43 0.52 0.59  0.42 0.50 0.56 

20 0.81 0.42 0.36  0.75 0.50 0.52 

21 0.72 0.59 0.65  0.65 0.62 0.71 

22 0.61 0.52 0.59  0.56 0.54 0.64 

23 0.66 0.56 0.61  0.48 0.48 0.57 

24 0.56 0.43 0.46  0.64 0.36 0.38 

25 0.61 0.59 0.66  0.64 0.64 0.71 

p: Item difficulty, rpb: Point biserial correlation, D: Item 

discrimination 
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In the second step of data analysis, item fit for the Rasch model 

was investigated. Item difficulties and item-fit statistics for the 

Rasch model were obtained through the Rasch model analysis in 

Winsteps. The results are presented in Table 4. Item difficulty 

indicates the level of the latent trait at which the probability of a 

given response to the item was .50.  In the Rasch model, the latent 

trait, which is shown as theta (θ), is measured and scaled with a 

mean of zero and a standard deviation of one. As item difficulties 

increase, items become more difficult to endorse. Item difficulties 

in the test form with word problems ranged from -1.978 to 0.93, 

and item difficulties in the other form with mathematically 

expressed items ranged from -1.483 to 1.083. The mean difficulty 

of word problems and mathematically expressed items were -

0.541 and -0.387, respectively.  

 

Table 3 also shows item fit statistics for the items. Item fit is 

evaluated based on the comparison of observed responses to 

expected responses for each item (Osteen, 2010). In this study, 

INFIT and OUTFIT values were used to check item fit. Based on 

the item fit criteria explained earlier, two items (item 13 from 

word problems and item 24 from mathematically expressed items) 

did not seem to have adequate fit. However, INFIT and OUTFIT 

values for these items were not largely deviated from the range of 

acceptable fit values. Therefore, these items were kept in the data 

analysis. Fifteen of the mathematically expressed items had higher 

item difficulties than the corresponding word problems (difference 

ranging from 0.095 to 1.034). Items 32, 34 and 48 showed 

especially large differences. For the rest of the items, word 

problems had either very similar difficulty with mathematically 

expressed items or slightly higher difficulties.  

 

In addition to the difference in item difficulties, the difference in 

person abilities between the two test forms was examined. Person 

abilities were estimated for each form separately. Figure 4 shows 

the density plot of person abilities from the two test forms. The 

density plot shows that there is more variation in the distribution 

of person abilities obtained from the test form consisting of word 
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problems. When the students responded word problems, the 

number of students with very high or very low abilities was 

higher. When the students responded mathematically expressed 

items, most of the abilities were congregated around the mean. 

The variation of the abilities was not as high as the variation of the 

abilities obtained from the word problems. 

 

Table 3. Item parameters and fit statistics for the Rasch model 
Item  Word Problems  Mathematically Expressed 

Items 
 Difficulty Outfit 

MNSQ 
Infit 

MNSQ 
 Difficulty Outfit 

MNSQ 
Infit 

MNSQ 
1  -0.0461 0.78 0.86  -0.2108 0.88 0.89 

2  0.4162 0.95 0.97  0.3979 1.03 1.00 

3  0.5452 1.14 1.03  0.8415 1.31 1.14 

4  -0.9232 1.23 1.12  -1.0944 1.16 1.12 

5  0.9309 0.95 0.93  1.0838 1.06 1.00 

6  -0.1590 1.22 1.13  -0.2367 1.46 1.29 

7  -1.9785 0.70 0.91  -1.2423 0.87 0.94 

8  -1.4145 0.77 0.92  -1.2895 1.00 0.96 

9  -0.0635 1.01 1.06  0.6961 1.21 1.12 

10  0.3979 1.04 1.04  0.1203 0.84 0.88 

11  0.2625 1.12 1.07  0.4253 1.12 1.05 

12  -1.3180 0.82 0.87  -1.1035 0.85 0.89 

13  -1.1494 0.63 0.80  -0.7907 1.27 1.08 

14  0.1203 0.92 0.93  0.0325 1.17 1.10 

15  -1.3180 0.74 0.80  -0.8788 0.62 0.74 

16  -0.4091 0.91 0.95  -0.5990 0.82 0.92 

17  -0.6511 0.80 0.89  -0.7556 0.73 0.86 

18  -1.3756 1.22 1.11  -1.2800 1.35 1.18 

19  0.4253 1.18 1.09  0.4528 1.23 1.12 

20  -1.9317 0.88 0.99  -1.4835 0.81 0.95 

21  -1.2895 0.70 0.84  -0.8611 0.99 0.84 

22  -0.6597 1.08 1.03  -0.3747 1.21 1.03 

23  -0.9410 0.83 0.94  0.0939 1.17 1.16 

24  -0.3833 1.42 1.20  -0.8170 1.47 1.25 

25  -0.6164 0.81 0.93  -0.7995 0.71 0.82 
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Figure 4. Distribution of the students’ ability estimates 

from two test forms 

 

 

In the final step of data analysis, three explanatory IRT models 

with item, person, and person-by-item covariates were estimated. 

The results from the explanatory IRT models were presented in 

Table 4. In Model 1, item difficulties and person abilities were 

estimated as random effects and item type (i.e., word problem vs. 

mathematically expressed item) was estimated as a fixed effect to 

explain the variation in item difficulties. Figure 5 shows item 

difficulties for word problems and mathematically expressed items 

that were estimated as random effects in the same model. As 

explained earlier, item difficulty is an indicator of item easiness in 

the explanatory IRT models. Figure 5 shows that most word 

problems were easier than their corresponding items written as 

mathematically expressed items in the other form.  
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Figure 5. Item difficulties of word problems (left) and 

mathematically expressed items (right) from Model 1 

 

In Model 1, the main effect of item type was statistically 

significant (β = 0.569, S.E. = 0.172, p < .001), indicating that word 

problems (reference group) are 1.77 times (i.e., e
0.569

) are easier 

than mathematically expressed items on average. This finding 

shows that the linguistic structure of a mathematics item may 

reduce or increase the difficulty level of the item regardless of its 

content and solution. 

 

Table 4. Summary of Estimates and Model Statistics of the Three 

Explanatory IRT Models  

Variables 
Model 1 Model 2 Model 3 

β SE β SE β SE 

Item Type 0.569* 0.172  0.648* 0.184  0.649* 0.185 

Gender  - - -0.168 0.114 -0.167 0.116 

Item Type * 

Gender 
- - - - -0.002 0.053 

* Significant at α=.001 
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In Model 2, gender was included as a person covariate. Gender 

was a dichotomous variable where male students were coded as 1 

and female students were coded as 0. The results from Model 2 

showed that gender was not a significant predictor of the variation 

among the students (β = -0.168, S.E. = 0.114, p > .05), while item 

type still remained as a significant predictor of the variation in 

item difficulties. This finding shows that there was no significant 

difference between male and female students’ average 

performances on the test.  

 

Model 3 included the interaction of gender and item type as a 

person-by-item covariate in addition to item type and gender. The 

results indicated that the interaction between gender and item type 

was not a significant predictor in Model 3 (β = -0.002, S.E. = 

0.053, p > .05). The estimated effect for this interaction was very 

small. This finding implies that the effect of item type did not 

differ between male and female students. As in Model 2, gender 

was not statistically significant and item type was a statistically 

significant predictor in Model 3. From these findings, it was 

concluded that item type was a significant predictor of the 

variation in item difficulties but gender and its interaction with 

item type did not have any impact on person abilities and item 

difficulties.  

 

To compare the three explanatory IRT models, AIC and BIC 

model fit indices were used (see Table 5). Across the three models 

used in this study, AIC and BIC fit indices provided consistent 

results. Based on the AIC and BIC fit statistics, Model 1 showed 

the best fit because it has the smallest AIC and BIC values among 

the three models. It should be noted that although AIC did not 

change between Model 1 and Model 2, BIC was smaller for Model 

1. Deviance statistics also support these findings. Although Model 

2 and Model 3 included more predictors than Model 1, there was 

not a big change in deviance across the three models. With only 

item type as a predictor, Model 1 seems to fit the data equally well 

as the other two models.  
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Table 5. Summary of Model-Fit Indices and Variances from the 

Three Explanatory IRT Models  

 Model 1 Model 2 Model 3 

Variance 

Components 

Person Level 

Variance 
2.3413 2.3228 2.3229 

Item Level 

Variance 
0.6585 0.6946 0.6943 

Model Fit 

Statistics 

AIC 35193 35193 35195 

BIC 35219 35227 35237 

Deviance 35187 35185 35185 

df 3 4 5 

 

Discussion 

 

he wording of mathematics problems may have a major influence 

on comprehension and students’ ability to solve the mathematics 

problems (Staub & Reusser, 1995). Previous research studies have 

manifested the discrepancy between students’ performance on 

word problems, and suggested that factors other than mathematical 

skills contribute to success in solving word problems 

(Schleppegrel, 2007; Adams, 2003; Lemke, 2003). Use of word 

problems or a simplified language in mathematics items as an 

accommodation can provide benefits to students with low 

language skills such as ELLs or students with certain types of 

learning or physical disabilities (see Abedi & Lord, 2001; Johnson 

& Monroe, 2004). Also, within test development process, these 

kinds of items are commonly used interchangeably in mathematics 

assessments. However, linguistic structure of the items is usually 

ignored in test development although using it may favour or 

negatively influence some examinees.  

 

This study investigated the impact of linguistic complexity on 

students’ performance in a mathematics assessment. Word 

problems and mathematically expressed items were compared to 

examine whether these items can be used interchangeably in 
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mathematics assessments. Explanatory item response modeling 

was used to estimate item difficulties, person abilities, and the 

effects of item type and gender. The results of this study indicated 

that word problems seem easier than items written with 

mathematical expressions. Therefore, the probability of answering 

a mathematics item correctly seems higher if the mathematical 

language used in the item is not very complex. This finding 

implies that mathematics items that measure the same content may 

function differently because of their linguistic complexity levels. 

Also, it should be noted that word problems can use relatively 

simple or more complex forms and the actual language used is 

therefore an important factor. This study focused on the use of 

Turkish in word problems and mathematically expressed items. 

Further studies could also shed more light on the use of different 

languages for developing word problems.  

 

A clear understanding of the impact of the linguistics factors in 

mathematical items can facilitate making the appropriate and 

adequate inferences of scores from mathematics assessments 

(Messick, 1995). When creating new mathematics items, it is 

important to check whether the content and difficulty levels of the 

items change depending on the linguistic complexity of the items. 

Adding or removing words from an item may change the way that 

examinees understand and interpret the item. Also, including 

additional verbal expressions may change the nature of the item in 

terms of its relationship with the underlying ability intended to be 

measured. Students might have difficulty in word problems even 

when the computation required is below the grade level (Larsen, 

Parker, & Trenholme, 1978; Wheeler & McNutt,1983). Some of 

the reasoning partially required to set up the calculation of the 

problem might have already been accomplished. When the 

magnitude of difficulty of the word problem is compared to the 

computational item for different student groups, this would 

provide insight into the relative effects of language on 

mathematics item comprehension for each group. 

Construct-irrelevant difficulty or easiness occurs when aspects of 

the task that are extraneous to the focal construct make the test 
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irrelevantly more difficult or easier for some individuals or groups 

(Messick, 1989, p. 34). When administering a mathematics 

assessment to students with highly different levels of reading and 

mathematical abilities, using word problems may not be a good 

practice. Because of the compensatory nature of reading and 

mathematics abilities, a student can answer a word problem easily 

because of the student’s strong skills in reading. This situation 

may cause item bias or DIF against students who do not have 

strong reading skills. In this study, gender was not a significant 

predictor of the variation between item difficulties. However, 

further analysis (e.g., DIF) should be conducted to examine the 

interaction between each item and gender. The EIRM framework 

can be used again for DIF analysis (see De Boeck & Wilson, 

2004).  

 

Learning mathematics and the language of mathematics is a 

challenge for all students. It is important to recognize that students 

need to learn to deal with the dense and technical language of 

mathematics (Schleppegrell, 2007). Lemke (2003) suggests that 

teachers should translate back and forth between the ordinary and 

technical language, embed the uses of mathematics in application 

contexts, and expose students to real out-of-school settings for use 

of mathematics. Instead of using word problems or mathematics 

items with a simplified language all the time, teacher should look 

for instructional ways to teach mathematical terms and concepts 

more effectively. Teachers should attempt to provide learning 

experiences to lead to acquisition of intended meaning of a 

mathematical term (Munro, 1979). A suggestion for teaching 

mathematical terms could be building pairs of items (e.g., a word 

problem and a computation item) with identical computational 

demands.  
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