TAKE 10 ... SIMPLIFICATION OF SURDS

Q1. Write $\sqrt{75}$ in the form $k \sqrt{3}$, where k is an integer.

Q2. (a) Express $5 \sqrt{27}$ in the form $n \sqrt{3}$, where n is a positive integer.
(b) Rationalise the denominator of $\frac{21}{\sqrt{3}}$

Q3. Expand $(1+\sqrt{2})(3-\sqrt{2})$
Give your answer in the form $a+b \sqrt{2}$ where a and b are integers.

Q4. (b) Expand and simplify $(2 \sqrt{5}+1)(3 \sqrt{5}-1)$
(c) Write $\frac{6}{\sqrt{12}}$ in the form \sqrt{n}, where n is an integer.

Q5. $\frac{\sqrt{3}}{5}+\frac{2}{\sqrt{3}}=a \sqrt{3}$, where a is a fraction. Find the value of a.

Q6. $A B D$ is a right angled triangle. All measurements are given in centimetres. C is the point on $B D$ such that $C D=\frac{\sqrt{3}}{3}$
$A D=B D=\frac{\sqrt{2}}{2}$
Work out the exact area, in cm^{2}, of the shaded region.

Q7. Here is a trapezium.
All measurements shown are in centimetres.
Work out the area of the trapezium.
Give your answer in cm^{2} in the form $a \sqrt{5}+b$ where a and b are integers.

Q8. The perimeter of a square is $\sqrt{120} \mathrm{~cm}$.
Work out the area of the square. Give your answer in its simplest form.

Q9. $a=\sqrt{8}+2 \quad b=\sqrt{8}-2 \quad T=a^{2}-b^{2}$
Work out the value of T.
Give your answer in the form $c \sqrt{2}$ where c is an integer.

Q10. Show that $\frac{3+\sqrt{2}}{5+\sqrt{8}}$ can be written as $\frac{11-\sqrt{2}}{17}$

