JustMaths

TAKE 10 ... SIMPLIFICATION OF SURDS

Q1. Write $\sqrt{75}$ in the form $k\sqrt{3}$, where k is an integer.

	(2)
Q2. (a) Express $5\sqrt{27}$ in the form $n\sqrt{3}$, where <i>n</i> is a positive integer.	

(b) Rationalise the denominator of
$$\frac{21}{\sqrt{3}}$$

Q3. Expand
$$(1 + \sqrt{2})(3 - \sqrt{2})$$
 (2)

Give your answer in the form $a + b\sqrt{2}$ where *a* and *b* are integers.

(2)

Q4. (b) Expand and simplify $(2\sqrt{5}+1)(3\sqrt{5}-1)$

(2)

(c) Write $\frac{6}{\sqrt{12}}$ in the form \sqrt{n} , where *n* is an integer.

(2)

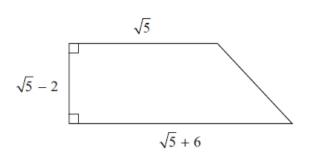
Q5. $\frac{\sqrt{3}}{5} + \frac{2}{\sqrt{3}} = a\sqrt{3}$, where *a* is a fraction. Find the value of *a*.

(3)

Q6. ABD is a right angled triangle. All measurements are given in centimetres.

C is the point on *BD* such that $CD = \frac{\sqrt{3}}{3}$

$$AD = BD = \frac{\sqrt{2}}{2}$$


Work out the exact area, in cm^2 , of the shaded region.

Q7. Here is a trapezium.

All measurements shown are in centimetres.

Work out the area of the trapezium. Give your answer in cm² in the form $a\sqrt{5} + b$ where *a* and *b* are integers.

Q8. The perimeter of a square is $\sqrt{120}$ cm.

Work out the area of the square. Give your answer in its simplest form.

(3)

(3)

JustMaths

Q9. $a = \sqrt{8} + 2$ $b = \sqrt{8} - 2$ $T = a^2 - b^2$

Work out the value of *T*.

Give your answer in the form $c\sqrt{2}$ where *c* is an integer.

Q10. Show that $\frac{3+\sqrt{2}}{5+\sqrt{8}}$ can be written as $\frac{11-\sqrt{2}}{17}$

(4)

(3)