TAKE 10 ... Alcebraic Fractions

Q1. (a) Simplify $\frac{2 y-12}{y^{2}-8 y+12}$
(b) Write as a single fraction $\frac{3}{x-4}-\frac{1}{x+5}$

Q2. Simplify fully $\frac{3 x^{2}-6 x}{x^{2}+2 x-8}$

Q3. Simplify completely $\frac{2 x^{2}-9 x-5}{4 x^{3}+2 x^{2}}$

Q4. Simplify fully $\frac{2 x^{2}+5 x-3}{x^{2}-9}$

Q5. (a) Solve $\frac{4(8 x-2)}{3 x}=10$
(b) Write as a single fraction in its simplest form $\frac{2}{y+3}-\frac{1}{y-6}$

Q6. Write $\frac{5}{x-3}-\frac{4}{x+3}$ as a single fraction in its simplest form.

Q7. Solve $\frac{h+7}{3}+\frac{2 h-1}{2}=\frac{5}{6}$

Q8. Show that $\frac{1}{2 x^{2}+x-15} \div \frac{1}{3 x^{2}+9 x} \quad$ simplifies to $\frac{a x}{b x+c} \quad$ where a, b and c are integers.

Q9. (a) Write $\frac{4 x^{2}-9}{6 x+9} \times \frac{2 x}{x^{2}-3 x}$ in the form $\frac{a x+b}{c x+d}$ where a, b, c and d are integers.
(b) Express $\frac{3}{x+1}+\frac{1}{x-2}-\frac{4}{x}$ as a single fraction in its simplest form.

Q10. Show that $6+\left[(x+5) \div \frac{x^{2}+3 x-10}{x-1}\right]$ simplifies to $\frac{a x-b}{c x-d}$ where a, b, c and d are integers.

