TAKE 10 ... ALGEBRAIC FRACTIONS

Q1. (a) Simplify $\frac{2y-12}{y^2-8y+12}$

(b) Write as a single fraction
$$\frac{3}{x-4} - \frac{1}{x+5}$$

Q2. Simplify fully
$$\frac{3x^2-6x}{x^2+2x-8}$$

Q3. Simplify completely
$$\frac{2x^2 - 9x - 5}{4x^3 + 2x^2}$$

Q4. Simplify fully
$$\frac{2x^2 + 5x - 3}{x^2 - 9}$$

Q5. (a) Solve
$$\frac{4(8x-2)}{3x} = 10$$

(b) Write as a single fraction in its simplest form
$$\frac{2}{y-3} - \frac{1}{y-6}$$

Q7. Solve
$$\frac{h+7}{3} + \frac{2h-1}{2} = \frac{5}{6}$$

(4)

(3)

Q8. Show that
$$\frac{1}{2x^2+x-15} \div \frac{1}{3x^2+9x}$$
 simplifies to $\frac{ax}{bx+c}$ where a , b and c are integers.

Q9. (a) Write
$$\frac{4x^2-9}{6x+9} \times \frac{2x}{x^2-3x}$$
 in the form $\frac{ax+b}{cx+d}$ where a, b, c and d are integers.

(3)

(b) Express
$$\frac{3}{x+1} + \frac{1}{x-2} - \frac{4}{x}$$
 as a single fraction in its simplest form.

Q10. Show that
$$6 + \left[(x+5) \div \frac{x^2 + 3x - 10}{x-1} \right]$$
 simplifies to $\frac{ax-b}{cx-d}$ where a , b , c and d are integers.