JustMaths ## **TAKE 5 ... LINEAR INEQUALITIES** ## Q1. | Question | Working | Answer | Mark | Notes | |----------|------------|------------------------------|------|---| | (a) | | -1, 0, 1, 2, 3
-4 < x ≤ 3 | 2 | B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect values) eg. 0, 1, 2, 3 or one additional value, eg –1, 0, 1, 2, 3, 4) | | (c) | 3y - 2 > 5 | v > ⁷ /a | 2 | B2 for $-4 < x \le 3$ or > -4 and ≤ 3
(B1 for $-4 < x$ or $x > -4$ or $x \le 3$ or $3 \ge x$
or > -4 or ≤ 3 or $-4 \le x < 3$)
(NB Accept the use of any letter) | | | 3y >7 | 7-73 | _ | M1 for clear intention to add 2 to both sides (of inequality or equation) or clear intention to divide all terms by 3 or $3y > 7$ or $3y < 7$ or $3y = 7$
A1 $y > \frac{7}{3}$ or $y > 2\frac{1}{3}$ or $y > 2\frac{1}{3}$ | | | | | | NB. final answer must be an inequality (SC B1 for $\frac{7}{3}$ oe seen if M0 scored) | #### Q2. | Question | Working | Answer | Mark | Notes | |----------|---------|---------|------|--| | (a) | | Diagram | 2 | B2 for fully correct solution with all three aspects with no
ambiguity
Aspect 1: circle at 3
Aspect 2: circle not shaded
Aspect 3: arrow pointing left indicating extension beyond
-4 or line extending beyond -4
(B1 for any two aspects) | | (b) | | x ≥ 5 | 2 | M1 for intention to add 7 to both sides (of inequality or equation) or to divide all 3 terms by 4 as a first step, or $(x =) 5$
A1 for $x \ge 5$ oe | ## Q3. | PAPER: 1M. | PAPER: 1MA0_2H | | | | | | |------------|----------------|----------------------|------|--|--|--| | Question | Working | Answer | Mark | Notes | | | | (a) | | -4, -3, -2,
-1, 0 | 2 | B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect) values or all 5 correct values and -5) | | | | (b) | | x > 4½ | 2 | M1 for an attempt to expand brackets (eg $6 \times x - 6 \times 2$) or $6x - 12$ or for an intention to divide both sides by 6 as the first step or for $4\frac{1}{2}$ oe seen A1 for $x > 4\frac{1}{2}$ oe | | | ## Q4. | Question | Working | Answer | Mark | Notes | |----------|--|--------|------|---| | | 3x > 11
$x > \frac{11}{3}$ or 3.66
OR
$(16 - 5) \div 3$
$\frac{11}{3}$ or 3.66 | 4 | 3 | M1 $3x > 11$ or $3x > 16 - 5$ or $3x + 5 - 5$
> $16 - 5$
A1 11 / ₃ or 3.6 (66) or 3.7
(Accept = or \ge in place of $>$)
B1 ft
OR
M1 $(16 - 5) \div 3$
A1 11 / ₃ or 3.6 (66) or 3.7
B1 ft | # JustMaths **Q5.** | Question | Answer | Mark | Mark scheme | Additional guidance | |----------|--------|------|---|---| | (a) | n>2 | M1 | for a method to isolate terms in n in any inequality or equation eg $14n - 11n > 6$ or $n = 2$ | Ignore incorrect inequality sign and accept "=" sign | | | | A1 | cao | | | (b) | 0- | M1 | for $-2-3 < x \le 4-3$ ($-5 < x \le 1$) | A circle around -5 and 1 implies M1 | | | -5 1 | M1 | for drawing a line from -5 to 1
or (indep) for an open circle at
either -2 or -5
or (indep) for a closed circle at 4
or 1 | A line from -5 to 1 implies M2 if no
working shown | | | | A1 | cao | |